
Sparse Matrix Algorithms

AER E 361:
Computational Techniques

for Aerospace Design
The Matrix
Iowa State University

http://temporallogic.org/courses/AERE361/

Kristin Yvonne Rozier AER E 361

http://temporallogic.org/courses/AERE361/

Sparse Matrix Algorithms

Dense Matrices

double matrix[10][10];

OR

double *matrix = (double *)malloc(M * N * sizeof(double));

Number of rows: M
Number of columns: N
Cost of storing the dense matrix: M × N × sizeof (double) bytes

For M = N = 1,000,000 and sizeof (double) = 8 bytes, we have 8 TB of
storage

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

Dense Matrix Struct

typedef struct dense_matrix_ {

int nrows;

int ncolumns;

double values[nrows][ncolumns];

} dense_matrix;

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

Real Life: Many Sparse Matrices

Sparse matrices contain many more 0s than non-0s.

By storing matrices smartly, we can save:

access time (including cache hits!)

memory

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

Where Do Sparse Matrices Occur? Everywhere!

Sparsity is a consequence of local correlation in PDE discretization
(current in a circuit, temperature, or voltage).

Linear Algebraic Equations: matrices represent systems of linear
equations

Finite Element Models

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

COO

Coordinate Format (COO)

rows array

columns array

values array

For every non-zero value in the original sparse matrix, there is an entry at
index i in the rows array, columns array, and values array that stores the
row, column, and value of that non-zero item

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

COO

COO Example

columns

0 1

row 0 [1.0 2.0]

row 1 [0.0 4.0]

is

unsigned rows[3] = { 0, 0, 1 };

unsigned columns[3] = { 0, 1, 1 };

double values[3] = { 1.0, 2.0, 4.0 };

at cell (0, 0) the value 1.0 is stored,

at cell (0, 1) the value 2.0 is stored,

at cell (1, 1) the value 4.0 is stored.

nothing is stored for (1, 0), so its value is implicitly set to 0.0.

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

COO

Finding a Value in COO

Example: we want the value stored at cell (1,1):

for (i = 0; i < M*N; i++) {

if (rows[i] == 1 and columns[i] == 1} {

result = values[i];

} /*end if*/

else { /*no exact match is found*/

result = 0;

} /*end else*/

} /*end for*/

This is not a very intelligent algorithm. . .

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

COO

Finding a Value in COO

Example: we want the value stored at cell (1,1):

for (i = 0; i < M*N; i++) {

if (rows[i] == 1 and columns[i] == 1} {

result = values[i];

} /*end if*/

else { /*no exact match is found*/

result = 0;

} /*end else*/

} /*end for*/

This is not a very intelligent algorithm. . .

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

COO

Algorithms Asside: Finding a Value in COO

How can we search on average half the space?
Can we set result to 0 only once?

for (i = 0; i < M*N; i++) {

if (rows[i] == 1 and columns[i] == 1} {

result = values[i];

} /*end if*/

else { /*no exact match is found*/

result = 0;

} /*end else*/

} /*end for*/

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

COO

COO Storage Savings Example

Example:

1, 000, 000× 1, 000, 000 matrix

5% of cells have non-zero values

50,000,000,000 non-zero values in total

assuming sizeof(unsigned) == 4)

Storage cost:

(sizeof(unsigned) + sizeof(unsigned) + sizeof(double)) * 5E10

=> 16 bytes * 5E10

=> 800 GB ... WAY LESS than 8TB!

Note: memory savings is not linear in terms of sparsity: 5% non-zeros is
stored in 10% of the size of the dense matrix!

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

COO

Sparse vs Dense, Defined by COO

Where is the storage tipping point?
When storing 16 bytes (per non-zero value) is cheaper than storing 8
bytes for every cell:

16 * nnz < 8 * nrows * ncols

where nnz = “number of non-zeros”

16 * (sparsity * nrows * ncols) < 8 * nrows * ncols

=> sparsity * nrows * ncols < 0.5 * nrows * ncols

=> sparsity < 0.5

So, if sparsity < 50%, we save!

of bytes per value in dense

sparsity < -----------------------------

of bytes per value in COO

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

COO

COO Matrix Struct

typedef struct coo_matrix_ {

int nnz;

unsigned rows[nnz];

/* row index for each non-zero value */

unsigned columns[nnz];

/* column index for each non-zero value */

double values[nnz];

/* each non-zero value */

} coo_matrix;

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

COO

Can We Do Better?

the space to store each element is double (16 vs 8 bytes)

some repetitive data is stored

∀ values i in the rows array: 0 ≤ i < M
∀ values j in the columns array: 0 ≤ i < N

linearly searching for values is inefficient

why search the whole array for the value at cell (980, 1020)?
better to just jump to offset 980 * ncols + 1020 in your array . . .

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

CSR

Compressed Row (CSR)

COO:

unsigned rows[5] = { 0, 0, 0, 1, 2 };

unsigned columns[5] = { 0, 3, 5, 0, 3 };

double values[5] = { 3.0, 4.0, 1.0, 1.0, 2.0 };

There’s a lot of redundant data in rows!

using 5 integers to differentiate between just three values: row 0, 1,
or 2

why do we need more items in rows than there are rows?

we can still keep columns and values sorted by row for efficiency,
even if we improve rows!

It is more efficient to store the number of items in each row, than
the row index for each item!

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

CSR

Compressed Row (CSR)

COO:

unsigned rows[5] = { 0, 0, 0, 1, 2 };

unsigned columns[5] = { 0, 3, 5, 0, 3 };

double values[5] = { 3.0, 4.0, 1.0, 1.0, 2.0 };

There’s a lot of redundant data in rows!

using 5 integers to differentiate between just three values: row 0, 1,
or 2

why do we need more items in rows than there are rows?

we can still keep columns and values sorted by row for efficiency,
even if we improve rows!

It is more efficient to store the number of items in each row, than
the row index for each item!

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

CSR

Compressed Row (CSR)

COO:

unsigned rows[5] = { 0, 0, 0, 1, 2 };

unsigned columns[5] = { 0, 3, 5, 0, 3 };

double values[5] = { 3.0, 4.0, 1.0, 1.0, 2.0 };

There’s a lot of redundant data in rows!

using 5 integers to differentiate between just three values: row 0, 1,
or 2

why do we need more items in rows than there are rows?

we can still keep columns and values sorted by row for efficiency,
even if we improve rows!

It is more efficient to store the number of items in each row, than
the row index for each item!

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

CSR

Compressed Row (CSR)

COO:

unsigned rows[5] = { 0, 0, 0, 1, 2 };

unsigned columns[5] = { 0, 3, 5, 0, 3 };

double values[5] = { 3.0, 4.0, 1.0, 1.0, 2.0 };

There’s a lot of redundant data in rows!

using 5 integers to differentiate between just three values: row 0, 1,
or 2

why do we need more items in rows than there are rows?

we can still keep columns and values sorted by row for efficiency,
even if we improve rows!

It is more efficient to store the number of items in each row, than
the row index for each item!

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

CSR

Compressed Row (CSR)

COO:

unsigned rows[5] = { 0, 0, 0, 1, 2 };

unsigned columns[5] = { 0, 3, 5, 0, 3 };

double values[5] = { 3.0, 4.0, 1.0, 1.0, 2.0 };

There’s a lot of redundant data in rows!

using 5 integers to differentiate between just three values: row 0, 1,
or 2

why do we need more items in rows than there are rows?

we can still keep columns and values sorted by row for efficiency,
even if we improve rows!

It is more efficient to store the number of items in each row, than
the row index for each item!

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

CSR

Compressed Row (CSR)

COO:

unsigned rows[5] = { 0, 0, 0, 1, 2 };

unsigned columns[5] = { 0, 3, 5, 0, 3 };

double values[5] = { 3.0, 4.0, 1.0, 1.0, 2.0 };

Improvement:

Store number of items in each row instead of row index for each item

row counts[i] tells how many non-zero values in row i

row counts is nrows long instead of nnz

save space if average nnz per row is > 1

unsigned row_counts[3] = { 3, 1, 1 };

unsigned columns[5] = { 0, 3, 5, 0, 3 };

double values[5] = { 3.0, 4.0, 1.0, 1.0, 2.0 };

This saves two integers!

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

CSR

Compressed Row (CSR)

To do a look-up: have to scan all of row counts to figure out the
offset of values from the target row in the columns and values arrays

Looking for (2,3) means checking row counts[2] to find the offset
of row 2 in columns and values

Note: values belonging to row i in columns and values start
where the values of row i-1 end, i.e., at offset
sum(row counts[0:i-1])

Scanning is expensive!

unsigned row_counts[3] = { 3, 1, 1 };

unsigned columns[5] = { 0, 3, 5, 0, 3 };

double values[5] = { 3.0, 4.0, 1.0, 1.0, 2.0 };

Let’s try this . . .

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

CSR

Compressed Row (CSR)

unsigned row_counts[3] = { 3, 1, 1 };

unsigned columns[5] = { 0, 3, 5, 0, 3 };

double values[5] = { 3.0, 4.0, 1.0, 1.0, 2.0 };

Fetch the value at (2,3):

To find the start of row 2, sum row counts[0] and row counts[1] to
get 4.

Then go to offset 4 in columns and check the value there.

It matches the column we’re searching for (3), so fetch values[4] and
return that.

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

CSR

Compressed Row (CSR)

unsigned row_counts[3] = { 3, 1, 1 };

unsigned columns[5] = { 0, 3, 5, 0, 3 };

double values[5] = { 3.0, 4.0, 1.0, 1.0, 2.0 };

Fetch the value at (2,3):

To find the start of row 2, sum row counts[0] and row counts[1] to
get 4.

Then go to offset 4 in columns and check the value there.

It matches the column we’re searching for (3), so fetch values[4] and
return that.

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

CSR

Compressed Row (CSR)

Where is this inefficient?

unsigned row_counts[3] = { 3, 1, 1 };

unsigned columns[5] = { 0, 3, 5, 0, 3 };

double values[5] = { 3.0, 4.0, 1.0, 1.0, 2.0 };

We had to scan through all of row counts to figure out the offset of
values from the target row in the columns and values arrays!

What if we had a matrix with 1,000,000 rows?

How can we store one value to make this more efficient?

We can just store the row offsets directly!

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

CSR

Compressed Row (CSR)

Where is this inefficient?

unsigned row_counts[3] = { 3, 1, 1 };

unsigned columns[5] = { 0, 3, 5, 0, 3 };

double values[5] = { 3.0, 4.0, 1.0, 1.0, 2.0 };

We had to scan through all of row counts to figure out the offset of
values from the target row in the columns and values arrays!

What if we had a matrix with 1,000,000 rows?

How can we store one value to make this more efficient?

We can just store the row offsets directly!

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

CSR

Compressed Row (CSR)

Where is this inefficient?

unsigned row_counts[3] = { 3, 1, 1 };

unsigned columns[5] = { 0, 3, 5, 0, 3 };

double values[5] = { 3.0, 4.0, 1.0, 1.0, 2.0 };

We had to scan through all of row counts to figure out the offset of
values from the target row in the columns and values arrays!

What if we had a matrix with 1,000,000 rows?

How can we store one value to make this more efficient?

We can just store the row offsets directly!

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

CSR

Compressed Row (CSR)

Where is this inefficient?

unsigned row_counts[3] = { 3, 1, 1 };

unsigned columns[5] = { 0, 3, 5, 0, 3 };

double values[5] = { 3.0, 4.0, 1.0, 1.0, 2.0 };

We had to scan through all of row counts to figure out the offset of
values from the target row in the columns and values arrays!

What if we had a matrix with 1,000,000 rows?

How can we store one value to make this more efficient?

We can just store the row offsets directly!

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

CSR

Compressed Row (CSR)

Where is this inefficient?

unsigned row_counts[3] = { 3, 1, 1 };

unsigned columns[5] = { 0, 3, 5, 0, 3 };

double values[5] = { 3.0, 4.0, 1.0, 1.0, 2.0 };

We had to scan through all of row counts to figure out the offset of
values from the target row in the columns and values arrays!

What if we had a matrix with 1,000,000 rows?

How can we store one value to make this more efficient?

We can just store the row offsets directly!

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

CSR

Compressed Row (CSR)

unsigned row_counts[3] = { 3, 1, 1 };

unsigned columns[5] = { 0, 3, 5, 0, 3 };

double values[5] = { 3.0, 4.0, 1.0, 1.0, 2.0 };

Like this . . .

unsigned row_offsets[3] = { 0, 3, 4 };

unsigned columns[5] = { 0, 3, 5, 0, 3 };

double values[5] = { 3.0, 4.0, 1.0, 1.0, 2.0 };

Calculating the offset of row i in columns or values just requires
checking row offsets[i]

Now row offsets[i] == sum(row counts[0:i-1])

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

CSR

Compressed Row (CSR)

unsigned row_offsets[3] = { 0, 3, 4 };

unsigned columns[5] = { 0, 3, 5, 0, 3 };

double values[5] = { 3.0, 4.0, 1.0, 1.0, 2.0 };

Fetch the value at (2,3):

Check row offsets[2] to find the offset of row 2 in columns and
values

Then go to offset 4 in columns and check the value there.

It matches the column we’re searching for (3), so fetch values[4] and
return that.

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

CSR

Compressed Row (CSR)

unsigned row_offsets[3] = { 0, 3, 4 };

unsigned columns[5] = { 0, 3, 5, 0, 3 };

double values[5] = { 3.0, 4.0, 1.0, 1.0, 2.0 };

Advantages of CSR:

Same advantages as COO for storing columns and values

stores offsets of each row in columns and values rather than the
actual row index for each non-zero item (as in COO)

Limits the length of row offsets to just nrows

(saving space)

Allows us to quickly find all of the values belonging to a row i by
just jumping to offset row offsets[i] in columns and values

(more efficient than scanning)

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

CSR

Compressed Row (CSR)

unsigned row_offsets[3] = { 0, 3, 4 };

unsigned columns[5] = { 0, 3, 5, 0, 3 };

double values[5] = { 3.0, 4.0, 1.0, 1.0, 2.0 };

One more thing. . .
Add one element to the end of row offsets: the total number of
non-zero entries in the matrix

unsigned row_offsets[4] = { 0, 3, 4, 5 };

Can calculate the length of row i using row [i + 1]− row [i] without
special-casing for the last row

Need to store the number of non-zero entries in the matrix anyway

Simply store nnz in row offsets[nrows] rather than in a separate
scalar variable

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

CSR

CSR Matrix Struct

typedef struct csr_matrix_ {

int nrows; /*the number of rows*/

/* The offset in columns,

values of each row’s representation

nnz = rows[nrows]*/

unsigned row_offsets[nrows + 1];

unsigned columns[nnz]; /* same as COO */

double values[nnz]; /* same as COO */

} csr_matrix;

How do we access this in a cache-efficient way?
Can we do better? WHEN do we want to do better?

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

CSR

CSR Matrix Struct

typedef struct csr_matrix_ {

int nrows; /*the number of rows*/

/* The offset in columns,

values of each row’s representation

nnz = rows[nrows]*/

unsigned row_offsets[nrows + 1];

unsigned columns[nnz]; /* same as COO */

double values[nnz]; /* same as COO */

} csr_matrix;

How do we access this in a cache-efficient way?

Can we do better? WHEN do we want to do better?

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

CSR

CSR Matrix Struct

typedef struct csr_matrix_ {

int nrows; /*the number of rows*/

/* The offset in columns,

values of each row’s representation

nnz = rows[nrows]*/

unsigned row_offsets[nrows + 1];

unsigned columns[nnz]; /* same as COO */

double values[nnz]; /* same as COO */

} csr_matrix;

How do we access this in a cache-efficient way?
Can we do better?

WHEN do we want to do better?

Kristin Yvonne Rozier AER E 361

Sparse Matrix Algorithms

CSR

CSR Matrix Struct

typedef struct csr_matrix_ {

int nrows; /*the number of rows*/

/* The offset in columns,

values of each row’s representation

nnz = rows[nrows]*/

unsigned row_offsets[nrows + 1];

unsigned columns[nnz]; /* same as COO */

double values[nnz]; /* same as COO */

} csr_matrix;

How do we access this in a cache-efficient way?
Can we do better? WHEN do we want to do better?

Kristin Yvonne Rozier AER E 361

	Sparse Matrix Algorithms
	
	COO
	CSR

