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Motivation: Verification of the Automated Airspace
Concept1

Data Com 

Strategic Separation: 
Autoresolver 

(3-20 min time horizon) 

Tactical Separation: 
TSAFE 

(1-3 min time horizon) 

Conflict-Free Trajectories 

Voice Com 

Traffic Alert & Collision Avoidance System (<1 min time horizon) 

Controller 
Interface 

1
H. Erzberger, K. Heere, Algorithm and operational concept for resolving short-range conflicts, Proc. IMechE G J.

Aerosp. Eng. 224 (2) (2010) 225243
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RV is a Semi-Formal Method. . .

”Formal Methods” are mathematically rigorous techniques for the
specification, design, and verification of systems.

Formal Specification:

System requirements (properties) in mathematical logic

Formal Verification:

Check that requirements always hold in a system (specified in a
logical language)

Examine the entire state space (all possible inputs)

Provide absolute assurance of a correctness or safety property

Given formal definitions of what a system does (M) and what it should do
(ϕ), formal methods can be used to show that M satisfies ϕ.

Intuitively, the system does what you think it should do and nothing else.
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System Modeling: Overview

Treat system components like black boxes

Abstract like-components i.e., multiple planes
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Model Checking vs Runtime Verification

Model Checking (MC)

Checks all possible runs of the system

Needs an accurate system model as input

Performed at design time for system revision/debugging
Computationally challenging; runs can take hours or days

Purpose: design refinement/debugging

Runtime Verification (RV)

Checks only the current run of the system

Needs no system model; the system is its own model

Performed during system operation, usually for mitigation
triggering2

Must be computationally efficient, even real time

Purpose: execution understanding; NOT debugging
2Other applications include black-box recording, sensor filtering, diagnostics,

post-mission analysis, and aiding (but NOT contributing) fault-tolerance, replanning
Laboratory for
Temporal Logic Kristin Yvonne Rozier Runtime Verification (RV)



Introduction Simulation ↔ RV RV Motivation R2U2 Framework Current Work

Runtime Monitoring
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Research: state-of-the-art

can check complex
temporal properties
very efficiently

low overhead

real-time

enables resets, exits from
infinite loops, etc.

requires instrumentation to
send state variables to
monitor
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From Simulation to Runtime Verification and Back:
Connecting Single-Run Verification Techniques3

Runtime Verification is a single-run (non-exhaustive) (semi-formal)
verification technique.

3Kristin Yvonne Rozier. From Simulation to Runtime Verification and Back:
Connecting Single-Run Verification Techniques. In 2019 Spring Simulation Conference
(SpringSim19). Tucson, Arizona, April 29 May 2, 2019.
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Simulation or Runtime Verification?
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Simulation or Runtime Verification?

4

4
Grigore Rosu and Klaus Havelund, 2001, https://www.runtimeverification.com/presentations/
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Simulation

Simulation

focus on:
discrete-event stochastic simulation
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Simulation

Simulation5

Definition:
A discrete-event simulation model is defined by three attributes:

stochastic – at least some of the system state variables are random;

dynamic – the time evolution of the system state variables is
important;

discrete-event – significant changes in system state variables are
associated with events that occur at discrete time instances only.

5
[PL06] Leemis, L. M., and S. K. Park. 2006. Discrete-event simulation: A first course. Pearson Prentice Hall Upper

Saddle River, NJ.
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Simulation

Figure: Characterization of a simulation system model in the form of a tree
diagram. We focus on the right-most branch of the tree.
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Simulation

Developing a System Model6

Algorithm 0: Developing a System Model. Iterate through Steps 2–6
until a valid computational model (executable hardware or software) has
been created: “as simple as possible, but never simpler.”

1 Decide system goals and objectives, e.g., Boolean analysis (which
faults need to be detected and which fault signatures to consider)

2 Build a conceptual model: state variables and their relationships.

3 Turn the conceptual model into a specification model, e.g., through
collecting and analyzing data or otherwise deriving a representative
model of relevant system behaviors

6
developing a discrete-event simulation model in [PL06] Leemis, L. M., and S. K. Park. 2006. Discrete-event simulation:

A first course. Pearson Prentice Hall Upper Saddle River, NJ.
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Simulation

Developing a System Model7

Algorithm 1: Developing a System Model. Iterate through Steps 2–6
until a valid computational model (executable hardware or software) has
been created: “as simple as possible, but never simpler.”

4 Turn the specification model into a computational model, in the
form of executable hardware or software.

5 Verify that the computational model is correct.

6 Validate that the computational model is consistent with the system
under test.

7
developing a discrete-event simulation model in [PL06] Leemis, L. M., and S. K. Park. 2006. Discrete-event simulation:

A first course. Pearson Prentice Hall Upper Saddle River, NJ.
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Simulation

Related to Algorithm 1 Step 3’s conceptual model, the following two
definitions hold for both simulation and runtime verification8

Definition:
A system state is a complete characterization of the system at an
instance in time, usually represented as an assignment to the complete set
of system variables.

8
Versions of these appear as Definitions 5.1.1 and 5.1.2 in PL06 as well as nearly every paper on runtime verification.
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Simulation

Definition: An event is an occurrence that changes the system state,
e.g., by altering the assignment to the system variables. Only an event can
result in a state change.

Laboratory for
Temporal Logic Kristin Yvonne Rozier Runtime Verification (RV)



Introduction Simulation ↔ RV RV Motivation R2U2 Framework Current Work

Simulation

Definition:
A fault is a deviation between the behavior in a system execution and the
expected behavior, as defined by safety requirements.

can occur in software, hardware, or a combination

can be a system state that should be unreachable

can be a path through multiple system states that should not be
followed

A fault might lead to a failure, but not necessarily.9 Differently, an error is
a mistake made by a human that results in a fault and possibly in a failure.

9
Leucker, M., and C. Schallhart. 2009. A brief account of runtime verification. The Journal of Logic and Algebraic

Programming vol. 78 (5), pp. 293303.
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Runtime Verification (RV)

Runtime Verification

focus on: online, stream-based discrete-time runtime verification
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Runtime Verification (RV)

Definition:
Online, stream-based discrete-time runtime verification is defined by
three attributes:

online – the RV engine executes at the same time (synchronously or
asynchronously) with the system under verification, during
deployment, observing the current execution and part of its history

stream-based – the output of the RV engine is a stream of
⟨time, verdict⟩ tuples, evaluating for every time t in the finite system
execution whether the execution starting at time t satisfies the
monitored requirement (as opposed to outputting a single such
verdict for the total execution from start to finish);

discrete-time – fault signatures are described by temporal logic
formulas (or, equivalently, automata) over discrete time instances
only, such as sensor signals.
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Runtime Verification (RV)

Asynchronous Observers (aka event-triggered)

evaluate with every new input

2-valued output: {true; false}
resolve ϕ as early as possible (a priori
known time)

for each clock tick, may resolve ϕ for
clock ticks prior to the current time n if
the information required for this
resolution was not available until n
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Runtime Verification (RV)

Asynchronous Observers Example

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

en ⊧ (alt ≥ 600ft)

en ⊧ (pitch ≥ 5○)

en ⊧ (cmd == takeoff )

always[5](pitch ≥ 5○)

0 (false,0) 8 (true,3)
1 (false,1) 9 (true,4)
2 (false,2) 10 (true,5)
3 ( , ) 11 (false,11) Resynchronized!
4 ( , ) 12 (false,12)
5 ( , ) 13 ( , )
6 ( , ) 14 (false,14) Resynchronized!
7 ( , ) 15 ( , )
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Runtime Verification (RV)

Comparably to discrete-event stochastic simulation runtime verification
reasons about systems that are:

stochastic – at the very least the environment is always a stochastic
component of the system that we have to address, and the system
faults RV aims to detect are largely random failures;

dynamic – RV reasons over temporal traces of system execution;

discrete-event – while there are some RV specification logics that
reason over continuous time (e.g., Signal Temporal Logic), the sensor
signals that serve as input to RV engines are inherently discrete.
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Runtime Verification (RV)

Figure: Characterization of a runtime verification engine paradigm in the form of
a high-level tree diagram We focus on the right-most branch of the tree
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Runtime Verification (RV)

Algorithm 210: Developing a Runtime Verification Engine. Iterate
until reaching required robustness (verification and validation) targets

1 Specifying (Un)Desired System Behavior – (Alg. 1, Steps 1-3),
defining verification objectives, system variables, correct level of
abstraction, and faithful representation in a specification model.

2 Producing a Monitor from a Specification – (Alg. 1, Steps 4-6),
make executable runtime verification engine, (in software or
programmable hardware), formally proving its correctness, and
validating this engine.

3 Connecting a Monitor to a System – execution of RV engine
running in parallel with the system depends upon connecting input
signals

10
Bartocci, E., Y. Falcone, A. Francalanza, and G. Reger. 2018. Introduction to runtime verification. In Lectures on

Runtime Verification, pp. 133. Springer.
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Commonalities

Common Objectives

correctness (always behaving the way we expect)

safety (not violating requirements)

performance-as-safety (upholding minimum requirements for safe
real-time operation such as responsiveness or throughput).
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Commonalities

Computational Model Format

(corresponding to Algorithm 1, Step 4)

reason about single executions of the system

called traces or runs
differ in the analysis performed on these

aim for software implementations

utilize same/similar fault models
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Commonalities

Notion of Time

can represent time and the transition between system states

can be either event-triggered or time-triggered (event-triggered more
common)

RV doesn’t represent clocks in the same way as simulations, but can
usually define equivalences

counters
reliance on checks of external-to-the-RV-engine system clocks
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Commonalities

Verification

extensive testing

comparison to expected outcomes defined by the human modeling the
system

RV allows for more rigorous, and therefore more automated,
verification efforts, e.g., create RV test-cases with a priori known
exact correct answers

Laboratory for
Temporal Logic Kristin Yvonne Rozier Runtime Verification (RV)



Introduction Simulation ↔ RV RV Motivation R2U2 Framework Current Work

Commonalities

Validation

consistency checks: do changes in the specification result in the
expected changes in the outputs?

comparison with individual system runs on the real system for
validation
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Contrasts

Purpose

The purpose of simulation is insight 11 whereas the purpose of RV is fault
detection 12.

11
Leemis, L. M., and S. K. Park. 2006. Discrete-event simulation: A first course. Pearson Prentice Hall Upper Saddle

River, NJ.
12

Leucker, M., and C. Schallhart. 2009. A brief account of runtime verification. The Journal of Logic and Algebraic
Programming vol. 78 (5), pp. 293303.
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Contrasts

RV/Simulation

Simulation:

design-time verification technique

executed offline

used to improve the system before deployment

characterizing system performance, understanding subtle system
features, discovering component interactions, improving responses,
maximizing profit

RV:

runtime verification technique

used to detect deviations from nominal operation online, in real time,
to enable mitigation actions

early-as-possible identification or prediction of faults or partial faults

robustify system operation, ensure safety/compliance with
requirements, enable certification
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Contrasts

Modeling/Specification Language , e.g., MLTL 13

Mission-Time Temporal Logic (MLTL) reasons about integer-bounded
timelines:

finite set of atomic propositions {p q}
Boolean connectives: ¬, ∧, ∨, and →
temporal connectives with time bounds:

Symbol Operator Timeline

◻[2,6]p Always[2,6] 0 1 2 3 4 5 6 7 8
p p p p p

◇[0,7]p Eventually[0,7] 0 1 2 3 4 5 6 7 8
p

pU[1,5]q Until[1,5] 0 1 2 3 4 5 6 7 8
p p q

pR[3,8]q Release[3,8]
p,q

0 1 2 3 4 5 6 7 8
qqq

13
T. Reinbacher, K.Y. Rozier, J. Schumann. “Temporal-Logic Based Runtime Observer Pairs for System Health

Management of Real-Time Systems.” TACAS 2014.
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Contrasts

Outputs

Simulation:

characterize system executions in the aggregate

job- (or customer- or event-) averaged statistics: average delays,
average interarrival times, or average service times

time-averaged statistics: utilization

RV:

checks one system execution (the current one)

Boolean verdict

Opportunities for validation of simulation via RV: using RV for extracting
statistics

Simulations could generate traces with Boolean-valued properties to
validate RV frameworks
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Autonomy: the Future of Aerospace (and Beyond . . . )
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A Recent Motivation. . .
Crash of ESA’s ExoMars Schiaparelli Lander

October 19, 2016

parachute deployed at:

altitude of 7.5 miles (12 km)
speed of 1,1075 mph (1,730 km/h)

heat shield ejected at altitude of 4.85 miles (7.8 km)

IMU miscalculated saturation-maximum period (by 1 sec)

Navigation system calculated a negative altitude

premature release of parachute & backshell
firing of braking thrusters
activation of on-ground systems at 2 miles (3.7 km) altitude

Crash at 185 mph (300 km/h)
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A Recent Motivation. . .
Crash of ESA’s ExoMars Schiaparelli Lander

Sanity Checks
Relevant to this Mission:

The altitude cannot be negative.

The rate of change of descent
can’t be faster than gravity.

The δ altitude must be within nominal parameters; it cannot change
from 2 miles to a negative value in one time step.

The saturation-maximum has an a priori known temporal bound.

These sanity checks could have prevented the crash.

Capability of such observations is required for autonomy.
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Runtime Verification: Required for Autonomy
& Future CPS

How do we
fit RV into
resources
on-board
already-flying

CPS?
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Satisfying Requirements

Responsive
Realizable

Unobtrusive

Unit

R2U2
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Realizable
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Runtime Monitoring On-Board

Adding currently available runtime monitoring capabilities to the UAS
would change its flight certification.

“Losing flight certification is
like moving over to the dark
side: once you go there you
can never come back.”

— Doug McKinnon,
NASA Ames’ UAS Crew Chief
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Requirements

Realizability:

easy, expressive specification language

generic interface to connect to a wide variety of systems

adaptable to missions, mission stages, platforms

Responsiveness:

continuously monitor the system

detect deviations in real time

enable mitigation or rescue measures

Unobtrusiveness:

functionality: not change behavior

certifiability: avoid re-certification of flight software/hardware

timing: not interfere with timing guarantees

tolerances: obey size, weight, power, telemetry bandwidth constraints

cost: use commercial-off-the-shelf (COTS) components
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Example: NASA’s Swift UAS

13 meter wingspan all-electric experimental platform
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Runtime Observers for the Swift UAS

cmd=takeoff

alt > alt0alt ≈ alt0

VIAS > VS

Whenever the Swift UAS is in the air, its indicated airspeed (VIAS) must
be greater than its stall speed VS . The UAS is considered to be air-bound
when its altitude alt is larger than that of the runway alt0.

always((alt > alt0) → (VIAS > VS))
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Encoding Timelines: Linear Temporal Logic

Mission-time LTL (MLTL) reasons about bounded timelines:

finite set of atomic propositions {p q}
Boolean connectives: ¬, ∧, ∨, and →
temporal connectives with time bounds:

Symbol Operator Timeline

◻[2,6]p Always[2,6] 0 1 2 3 4 5 6 7 8
p p p p p

◇[0,7]p Eventually[0,7] 0 1 2 3 4 5 6 7 8
p

pU[1,5]q Until[1,5] 0 1 2 3 4 5 6 7 8
p p q

pR[3,8]q Release[3,8]
p,q

0 1 2 3 4 5 6 7 8
qqq

Mission-bounded LTL is an over-approximation for mission time τ
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Runtime Monitoring for the Swift UAS

The precision of the position reading PGPS from the GPS subsystem
depends on the number of visible GPS satellites Nsat .

◻(
◻(Nsat == 1) → PGPS ≤ P1

GPS ∧
◻(Nsat == 2) → PGPS ≤ P2

GPS ∧
◻(Nsat == 3) → PGPS ≤ P3

GPS ∧
◻(Nsat ≥ 4) → PGPS ≤ P+

GPS)

Laboratory for
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◻(
◻(Nsat == 1) → PGPS ≤ P1

GPS ∧
◻(Nsat == 2) → PGPS ≤ P2

GPS ∧
◻(Nsat == 3) → PGPS ≤ P3

GPS ∧
◻(Nsat ≥ 4) → PGPS ≤ P+

GPS)
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Runtime Monitoring for the Swift UAS

After receiving a command (cmd) for takeoff, the Swift UAS must reach
an altitude of 600ft within 40 seconds.

◻((cmd == takeoff) → ◇[0,40s](alt ≥ 600 ft))
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Runtime Monitoring for the Swift UAS

All messages sent from the guidance, navigation and control (GN&C)
component to the Swift actuators must be logged into the on-board file
system (FS). Logging has to occur before the message is removed from
the queue. In contrast to the requirements stated above, this flight rule
specifically concerns properties of the flight software.

◻((addToQueueGN&C ∧◇removeFromQueueSwift) →
¬removeFromQueueSwift U writeToFS)

Laboratory for
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Asynchronous Observers (aka event-triggered)

evaluate with every new input

2-valued output: {true; false}
resolve ϕ as early as possible (a priori
known time)

for each clock tick, may resolve ϕ for
clock ticks prior to the current time n if
the information required for this
resolution was not available until n
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Asynchronous Observers Example

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

en ⊧ (alt ≥ 600ft)

en ⊧ (pitch ≥ 5○)

en ⊧ (cmd == takeoff )

always[5](pitch ≥ 5○)

0 (false,0) 8 (true,3)
1 (false,1) 9 (true,4)
2 (false,2) 10 (true,5)
3 ( , ) 11 (false,11) Resynchronized!
4 ( , ) 12 (false,12)
5 ( , ) 13 ( , )
6 ( , ) 14 (false,14) Resynchronized!
7 ( , ) 15 ( , )
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Synchronous Observers (aka time-triggered)

update continuously

3-valued output: {true; false; maybe}
small hardware footprints
(≤ 11 two-input gates/operator)

Synchronous observers update at every tick of the system clock
. . . enabling probabilistic system diagnosis!
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Synchronous Observers Example

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

en ⊧ (alt ≥ 600ft)

en ⊧ (pitch ≥ 5○)

en ⊧ (cmd == takeoff )

always
[5]((alt ≥ 600ft) ∧ (pitch ≥ 5○))

0 (false,0) 8 (false,8)
1 (false,1) 9 (false,9)
2 (false,2) 10 (maybe,10)
3 (false,3) 11 (false,11)
4 (false,4) 12 (false,12)
5 (false,5) 13 (maybe,13)
6 (false,6) 14 (false,14)
7 (false,7) 15 (maybe,15)
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Bayesian Reasoning

Our Bayesian Networks (BNs) contain

(observable) sensor nodes S
(unobservable) status nodes U
health nodes HS ,HU

Discrete sensor values & outputs of LTL/MTL
formulas → S nodes

Posteriors of the health nodes HU ,HS reflect
the most likely health status of the component

H_U

U

S

H_S

In our framework we do not use Dynamic BNs as temporal aspects are
handled by the temporal observers.
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R2U2: Realizable, Responsive, Unobtrusive14

R2U2 specification format:
1 Signal Processing: Preparation of sensor readings

Filtering: processing of incoming data
Discretization: generation of Boolean outputs

2 Temporal Logic (TL) Observers: Efficient temporal reasoning
1 Asynchronous: output ⟨t,{0,1}⟩
2 Synchronous: output ⟨t,{0,1, ?}⟩

Logics: MTL, pt-MTL, Mission-time LTL
Variables: Booleans (from system bus), sensor filter outputs

3 Bayes Nets: Efficient decision making

Variables: outputs of TL observers, sensor filters, Booleans
Output: most-likely status + probability

14
Kristin Yvonne Rozier, and Johann Schumann. “R2U2: Tool Overview.” In International Workshop on Competitions,

Usability, Benchmarks, Evaluation, and Standardisation for Runtime Verification Tools (RV-CUBES), held in conjunction with
the 17th International Conference on Runtime Verification (RV), Kalpa Publications, Seattle, Washington, USA, September
13-16, 2017.
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R2U2 Observation Tree (Specification)

15

name: S4

LTL: <formula> MTL: <formula>

name: S5

LTL: <formula>

name: S6 name: S3

MTL: <formula> LTL: <formula>

name: S1 name: S2

MTL: <formula>

Relationship: takes as input

Property: variable name

Bayes Net health node

Properties: name, conditional probability table (CPT)

Properties: name, LTL/MTL/pt−MTL formula

Temporal Logic Observer

Properties: name, filter

Boolean filter

Properties: name, origin

Sensor signal

Hdy FGx FGyHdx

< 0 < 0 < 0 < 0 Ntot

Nb

>=1= 0

... ... ...

name: H_FG name: H_FC_rxUR name: H_FC_RxOVR name: H_FG_TxOVR name: H_FG_TxErr

CPT CPT CPT CPT CPT

15
Kristin Yvonne Rozier, and Johann Schumann. “R2U2: Tool Overview.” In International Workshop on Competitions,

Usability, Benchmarks, Evaluation, and Standardisation for Runtime Verification Tools (RV-CUBES), held in conjunction with
the 17th International Conference on Runtime Verification (RV 2017), Springer-Verlag, Seattle, Washington, USA, September
13–16, 2017.
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Runtime Functional Specification Patterns16

Rates

Ranges

Relationships

Control Sequences

Consistency Checks

Velocity

Velocity

?

16
K.Y.Rozier. “Specification: The Biggest Bottleneck in Formal Methods and Autonomy.” VSTTE, 2016.
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FPGA Implementation of Temporal Observers17

q =
Tϕ.τe − τ

m↑ϕ ≥ q

mτs =
Tϕ.τe + 1

multiplexer

TξTϕ

edge detection

i1

j

i2

y1

y2

¬ σ2 ¬ σ3

10 ξ0 100 ξ1

ξ2 ∧ ξ3

σ1 ∧ ξ4

¬ ξ5

êval (¬ σ2) êval (¬ σ3)

êval ( 10 ξ0) êval ( 100 ξ1)

êval (ξ2 ∧ ξ3)

êval (σ1 ∧ ξ4)

êval (¬ ξ5)

σ1
σ2
σ3

inputs

asynchronous synchronous

outputs

depth d of
AST (ξ) = 5

en
′

⊧ ξ en ⊧ êval (ξ)

qσ1

qξ2 qξ3

qξ4

asynchronous observers: substantial hardware complexity

synchronous observers: small HW footprint
17

Thomas Reinbacher, Kristin Y. Rozier, and Johann Schumann. “Temporal-Logic Based Runtime Observer Pairs for
System Health Management of Real-Time Systems.” In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 8413 of Lecture Notes in Computer Science (LNCS), pages 357–372, Springer-Verlag, April, 2014.
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Multi-Platform, Multi-Architecture Runtime Verification of
Autonomous Space Systems18

R2U2

R2U2

R2U2

18NASA ECF Award
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Robonaut2
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Robonaut2’s Knee
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Goals to Work Toward

Fault description: (1) identify when a “switch” happens from 1 of 3
positions (as it is at a discrete point during operation), and (2) to identify
on the joint level which APS is at fault.
(1) is indicated by ϕ1: do APS1 and APS2 disagree
(2) is indicated by the other two MLTL specs: ϕ2, ϕ3

If ϕ1 is triggered but not ϕ2 or ϕ3 then we have a different fault; trigger
standard error handling

Goal 1: detect this fault 100% of the time with no false positives

Goal 2: disambiguate between 3 actions:
1 Reinitialize assuming APS1 is bad
2 Reinitialize assuming APS2 is bad
3 No action: either there is no fault or a different fault has occurred

Goal 3: there is a precursor to this error whose cause is not known?
Laboratory for
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MLTL Specifications

Do APS1 and APS2 disagree by a large margin (2 radian threshold):
indicates that there is a fault

THRESHOLD = (2.094 ± 0.03rad)

2.094 is the 120 separation; 0.03 is the range of the fine position sensing
in APS

Vthreshold = ∣r2.left leg .joint0.APS1 − r2.left leg .joint0.APS2∣ > (2.064)

ϕ1 = G[0,3](Vthreshold)

Assumption: all faults occur in known transition modes so we can test the
monitor with generated error traces for those scenarios
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MLTL Specifications

Encoder drift fault occurs and encoder position agrees with APS2 (indicates fault
occurred and APS1 is wrong)

AGREEEnc−APS2 = ∣r2.left leg .joint0.APS2 − r2.left leg .joint0.EncPos ∣ < 0.01rad

Assumption: this can be refined to represent encoder drift over time but this should be a
good indication of agreement in general

ϕ2 = [r2.left leg .joint0.FaultEncPos ∧G[0,3](AGREEEnc−APS2)] → APS1WRONG

If there is disagreement but not encoder drift fault then assume APS2 is wrong:

ϕ3 = G[0,3](Vthreshold)∧!r2.left leg .joint0.FaultEncPos → APS2WRONG

Assumption: the two agreeing sensors are correct {EncPos, APS1, APS2}
Assumption: all encoder faults are detected in r2.left leg.joint0.FaultEncPos
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http://temporallogic.org/research/R2U2/R2U2-on-R2_demo.mp4
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Lifting Runtime Monitoring

Temporal Fault Disambiguation↑

Runtime Monitoring

“R2U2 breaks our taxonomy; it is entirely application driven.”
— Giles Reger, 11/13/201819

19
Falcone, Ylis, Sran Krsti, Giles Reger, and Dmitriy Traytel. ”A taxonomy for classifying runtime verification tools.” In

International Conference on Runtime Verification, pp. 241-262. Springer, Cham, 2018.
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Hard- and Software Architecture: Resource Estimation

FPGA

Memory Interface
Control Unit
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How do we fit in the
resources left over?

Choose between 3 R2U2
implementations:

Hardware: FPGA
Software: C
emulation of FPGA
Software:
Object-oriented
C++
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Resource Estimation and Improved Encoding Algorithms
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R2U2: Realizable, Responsive, Unobtrusive20

R2U2 specification format:
1 Signal Processing: Preparation of sensor readings

Filtering: processing of incoming data
Discretization: generation of Boolean outputs

2 Temporal Logic (TL) Observers: Efficient temporal reasoning
1 Asynchronous: output ⟨t,{0,1}⟩
2 Synchronous: output ⟨t,{0,1, ?}⟩

Logics: MTL, pt-MTL, Mission-time LTL
Variables: Booleans (from system bus), sensor filter outputs

3 Bayes Nets: Efficient decision making

Variables: outputs of TL observers, sensor filters, Booleans
Output: most-likely status + probability

20
Kristin Yvonne Rozier, and Johann Schumann. R2U2: Tool Overview. In International Workshop on Competitions,

Usability, Benchmarks, Evaluation, and Standardisation for Runtime Verification Tools (RV-CUBES), held in conjunction with
the 17th International Conference on Runtime Verification (RV), Kalpa Publications, Seattle, Washington, USA, September
13-16, 2017.
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