Formal Methods
Explained

Kristin Yvonne Rozier
lowa State University

Applied Formal Methods
August 22, 2021

JOWA STATE | Laboratory for

Kristin Yvonne Rozier Formal Methods Explained

Who Are They?

Edmund M. Clarke E. Allen Emerson Joseph Sifakis

IOWA

UNIV ¥ Yvonne Rozier Formal Methods Expl

The 2007 Turing Award

Edmund M. Clarke E. Allen Emerson Joseph Sifakis

Kristin Yvonne Rozier Formal Methods Explained

The 2007 Turing Award

Edmund M. Clarke E. Allen Emerson Joseph Sifakis

For developing Model-Checking into a highly effective verification
technology, widely adopted in the hardware and software industries.

JOWA STATE | Laboratory [m

Kristin Yvonne Rozier Formal Methods Explained

The 2007 Turing Award

Edmund M. Clarke E. Allen Emerson Joseph Sifakis

For developing Model-Checking into a highly effective verification
technology, widely adopted in the hardware and software industries.

@ What are Model Checking, Formal Methods in general?

Kristin Yvonne Rozier Formal Methods Explained

The 2007 Turing Award

Edmund M. Clarke E. Allen Emerson Joseph Sifakis

For developing Model-Checking into a highly effective verification
technology, widely adopted in the hardware and software industries.

@ What are Model Checking, Formal Methods in general?
@ Why do we need Formal Methods?

Kristin Yvonne Rozier Formal Methods Explained

The 2007 Turing Award

Edmund M. Clarke E. Allen Emerson Joseph Sifakis

For developing Model-Checking into a highly effective verification
technology, widely adopted in the hardware and software industries.
@ What are Model Checking, Formal Methods in general?

@ Why do we need Formal Methods?
o Why don’t we formally verify all systems?

Kristin Yvonne Rozier Formal Methods Explained

What Are Formal Methods?
©000000000000000000

Formal Methods

"Formal Methods” are mathematically rigorous techniques for the
specification, design, and verification of software and hardware systems.

Formal Methods:

@ Check that behaviors (statements in mathematical logic) always
hold in a system (specified in a logical language)

@ Symbolically examine the entire state space (all possible inputs)

@ Provide absolute assurance of a correctness or safety property

Given formal definitions of what a system does (M) and what it should
do (), formal methods can be used to show that M satisfies .

Kristin Yvonne Rozier Formal Methods Explained

What Are Formal Methods?
0@00000000000000000

Formal Methods

"Formal Methods” are mathematically rigorous techniques for the
specification, design, and verification of systems.

Formal Specification:
e System requirements (properties) in mathematical logic
Formal Verification:
@ Check that requirements always hold in a system (specified in a
logical language)
e Examine the entire state space (all possible inputs)
@ Provide absolute assurance of a correctness or safety property

Given formal definitions of what a system does (M) and what it should
do (), formal methods can be used to show that M satisfies .
Intuitively, the system does what you think it should do and nothing else.

Kristin Yvonne Rozier Formal Methods Explained

What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?
00®0000000000000000 000000000 000000000

Why Use Formal Methods?

"If it fails, people die."

T
JOWA STATE | Laboratory for

UNIVERSITY | Temporal Logic Kristin Yvonne Rozier Formal Methods Explained

What Are Formal Methods?
000@000000000000000

Formal Verification of an NGATS Communication Protocol

M: What the

system does

Tactical Separation

Auto-Resolver Assisted Flight
(AR) Environment

(TSAFE)
Controller
Interface

@ The auto-resolver sends flight commands to the aircraft.
@ The aircraft may request a specific flight command.

@ The controller may request a specific flight command

@ TSAFE commands override all others.

@ Requests cannot be made in the presence of conflict.

("]

Only one request is registered at a time.

n Yvonne Rozi Formal Methods Explained

What Are Formal Methods?
0000@00000000000000

NGATS Communications Protocol Specifications

©w: How the system should behave

V' “Every conflict is addressed”
Or, we can choose to specify a stricter version of this property:

“Every conflict is addressed immediately (i.e in one time step)”
“The system will never issue conflicting commands”
"All conflicts are eventually resolved”

"All controller requests are eventually addressed”

NN NN

"All aircraft requests are eventually addressed”

We can verify all of these behaviors hold via formal specifications . ..

Kristin Yvonne Rozier Formal Methods Explained

What Are Formal Methods?
00000@0000000000000

Propositional Logic Behavior Properties

Propositional Logic:

p,q Boolean variables
-p not

pAqg and

pVq or

p — q implies

Formal Methods Explained

What Are Formal Methods?
00000@0000000000000

Propositional Logic Behavior Properties

Propositional Logic:

p,q Boolean variables
-p not

pAqg and

pVq or

p — q implies

Continuous systems necessarily involve a notion of time. Propositional
logic is not expressive enough to describe real systems.

Formal Methods Explained

What Are Formal Methods?
000000@000000000000

Temporal Logic Behavior Properties

Linear Temporal Logic (LTL) formulas reason about linear timelines:
@ a finite set Prop of atomic propositions
@ Boolean connectives: —, A, V, and —
@ temporal connectives:
Xy NEXT TIME
@UY UNTIL
@Ry RELEASE
U ALWAYS, also called G for “globally”
O EVENTUALLY, also called F for “in the future”
Computational Tree Logic (CTL) reasons about branching paths:
@ Temporal connectives are proceeded by path quantifiers:
A for all paths
E exists a path

Laboratory fi
IOWA STATE [La 3 Kristin Yvonne Rozier Formal Methods Explained

What Are Formal Methods?
0000000@00000000000

Model Checking

Ay —y—> EMPTY?

Model checking finds disagreements between
the system model and the formal specification.

If there is disagreement, a counterexample trace is returned.
Otherwise, the system satisfies the specification.

JOWA STATE | Laboratory for

n Yvonne Rozier Formal Methods Explained

What Are Formal Methods?

0O0000000e0000000000

A Simple System Represented As An Automaton

2-bit Binary Counter:
a marks the the start of a new number
b is the bit counter

a=1&b=0 a=0&b=0 a=1&b=0 a=0&b=1

a=0&b=1 a=1&b=1 a=0&b=0

00011011 ...

n Yvonne Rozier Formal Methods Explained

What Are Formal Methods?
000000000e000000000

How Is Model Checking Implemented?

Explicit Model Checkers:
e Construct the state-space explicitly (i.e., create an automaton).
@ Search for a trace falsifying the specification.

o For finite (safety) properties, look for an accepting run
e For nonterminating linear properties, look for an accepting lasso by
finding strongly connected components in the automaton graph.

n Yvonne Rozi Formal Methods Explained

What Are Formal Methods?
0000000000e00000000

Explicit-state Model Checking:
It's Like a Fractal ...

JOWA STATE | Laboratory for
UNIVERSITY | Temporal Logic

Kristin Yvonne Rozier Formal Methods Explained

What Are Formal Methods?
00000000000e0000000

Symbolic Model Checking:
It's Like a Fractal Equation!

@ Equations that capture all relevant aspects of the system design but
reduce the state space.

= Vn, x, = Frac(2"x + 0)

Kristin Yvonne Rozier Formal Methods Explained

What Are Formal Methods?
000000000000e000000

How Is Model Checking Implemented?

Symbolic Model Checkers:
@ Represent the model symbolically using Boolean formulas.

@ Analyze the model using Binary Decision Diagrams (BDDs) or
Satisfiability (SAT). X

Reasoning:
@ increase efficiency
@ decrease memory usage
@ increase scalability
@ increase speed

binary decision diagram
All software (including continuous systems) is executed over Boolean logic.

[OWA STATE | Labora

Kristin Yvonne Rozier Formal Methods Explained

What Are Formal Methods?
0000000000000e00000

Theorem Proving

@ Describe the system in a formal language.

@ Satisfy type-checks and other proof obligations. (type-theoretic languages)
© Introduce behavior properties as theorems that must be proven to
hold using:

o the formal description of the system behavior
e a set of logical axioms
e a set of inference rules

Use rigorous logical deductions (i.e. each step follows from a rule of
inference and hence can be checked by a mechanical process.)

If the safety property does not hold, the programmer will encounter a
proof step that cannot be discharged and which describes the
circumstances of the bug.

Note this is a one-way implication: such a proof step could signify user error!

Formal Methods Explained

What Are Formal Methods?
0000000000000080000

Example Theorems in PVS

Let p1, po be planes.
Let a be an action that a plane p can take.

Soundness (safety) for separation assurance:
Vp1, p2 : (good_actions_taken) = dist(p1, p2) > D, where D is the
minimum separation distance

Completeness (liveness):
Vp3a : good_action(a, p)

n Yvonne Rozier Formal Methods Explained

What Are Formal Methods?
000000000000000e000

Example: Verifying NGATS Communication Protocol

Variables
AR_command
TSAFE_command

controller_request

Tactical Separation .
Auto-Resolver Assisted Flight aircraft_request
4R B o™ TSAFE clear

| Controller
Interface

The auto-resolver sends flight commands to the aircraft.

The aircraft may request a specific flight command.
The controller may request a specific flight command
TSAFE commands override all others.

Requests cannot be made in the presence of conflict.
Only one request is registered at a time.

n Yvonne Rozi Formal Methods Explained

What Are Formal Methods?
0000000000000000e00

airspace is clear
no commands
no requests

~AR_command
~TSAFE_command
~controller_request
~aircraft_request
TSAFE_clear

aircraft controller| [controlle
request request request
sent sent ignored

AR command
executed

aircraft
request
ignored

3

~AR_command
~TSAFE_command
controller_request
~aircraft_request
TSAFE_clear

AR_command
~TSAFE_command
~controller_request
~aircraft_request
TSAFE_clear

~AR_command
~TSAFE_command
~controller_request
aircraft_request
TSAFE _clear

TSAFE command
executed

controller
request
granted

aircraft
request
granted

conflict
detected

conflict
detected

~AR_command
~TSAFE_command
~controller_request
~aircraft_request
~TSAFE_clear

~AR_command
TSAFE_command
~controller_request
~aircraft_request
~TSAFE_clear

AR_command
~TSAFE_command
~controller_request
~aircraft_request

~TSAFE_clear

AR command
ignored

n Yvonne Ro Formal Methods Expl

What Are Formal Methods?
00000000000000000e0

NGATS Communications Protocol Specifications

“Every conflict is addressed”
ALWAYS(— TSAFE _clear — EVENTUALLY TSAFE_command)
Or, we can choose to specify a stricter version of this property:

“Every conflict is addressed immediately (i.e in one time step)”
ALWAYS(— TSAFE _clear — NEXT(TSAFE _command))

“The system will never issue conflicting commands”
ALWAYS(—(AR_command N TSAFE _command))

"All conflicts are eventually resolved”

ALWAYS(— TSAFE _clear — EVENTUALLY TSAFE _clear)

"All controller requests are eventually addressed”
ALWAYS(controller _request — EVENTUALLY —controller_request)

"All aircraft requests are eventually addressed”
ALWAYS(aircraft_request — EVENTUALLY —aircraft_request)

Kristin Yvonne Rozier Formal Methods Explained

What Are Formal Methods?
000000000000000000e

Formal Methods Give Absolute Assurance ...at a Cost

There are great benefits!

@ Ex: Model checking returns a counterexample trace or assurance
one doesn't exist! !

Formal verification is hard:

@ Theorem proving is undecidable.

@ Model checking is intractable. (i.e., LTL model checking is
PSPACE-complete.)

Can't we use something easier to achieve the same level of assurance?
@ testing

@ simulation

o fault-tolerance

n Yvonne Rozier Formal Methods Explained

Why Do We Need Formal Methods?
©00000000

Verification Methods

@ Testing proves the existence of the correct behavior for any given
input

° scales testing and extends it to hypothetical systems

e Fault tolerance designs resilient systems that fail safely

ALL of these methods are invaluable for producing robust systems

So why do we ALSO need formal methods?

Kristin Yvonne Rozier Formal Methods Explained

Why Do We Need Formal Methods?
0®0000000

The Donald == Donald Knuth

“

Beware of bugs in the above code;
I have only proved it correct, not tried it.”
— Donald Knuth

https://staff.fnwi.uva.nl/p.vanemdeboas/knuthnote.pdf

Hint: they solve different problems ...

IOWA STATE | Labora

Kristin Yvonne Rozier Formal Methods Explained

https://staff.fnwi.uva.nl/p.vanemdeboas/knuthnote.pdf

Why Do We Need Formal Methods?
00@000000

The Random Testing Approach Does Not Work . ..
for Cyber-Physical or Software Systems

Random testing: Generate random trajectories through the state space.
Estimate the probability that the property holds to a certain level of
confidence.

@ There is no reason why if something works for two data points, that
it will work for data points in between.

@ To discover a bug: have to get lucky and guess the right test case.

@ Have to cover every data point to eliminate uncertainty.

@ In software, each point is its own boundary (can't just check the
boundary conditions).

Kristin Yvonne Rozier Formal Methods Explained

An Example

Why Do We Need Formal Methods?
000@00000

. Traffic to a Website

60

50

40

30

20

100 Random Samples of a 500-Point Discrete System

| L BB N

M\ —\ ["y\
\ AN A\ I\
: I\ VAR

w\|\\\\|\\\\|\\\\|\\\\|\ \\lww\l\\\\\/ﬁjwuwl

100 150 200 250 300 350 400 450 500
X

Kristin Yvonne Ro.

Formal Methods Explained

Why Do We Need Formal Methods?
0000@0000

Example Continued

The 500-Point Discrete System
> 305—
: |
10 I ‘N “ M\ MJ Mﬁ ‘w h |f”‘
A
05" 50 100 150 200 250 3(I)0 350 400 450 5(I)0
X

Kristin Yvonne Rozier Formal Methods Explained

Why Do We Need Formal Methods?
000008000

Code Example: Request — Auto-Resolver

global Boolean processing.request = 0;

function make_request(request) {

aircraft : :
request //0nly 1 request is allowed at a time

if (processing request == 1) {

//Already processing a request
Auto-Resolver return "request ignored";
(AR) } //end if
processing request++; //flag: we’re processing
c;’e";;‘;':r //Examine the request
response = check_request(request);

//Request cannot overrule TSAFE commands
S ification: if ((TSAFE_command == 0)
pecitication: && (processing.request == 1)) {
OnIy one request is processing request--; //unset flag
. . return response;
registered at a time. } //end if
} //end function

in Yvonne Rozi Formal Methods Explained

Why Do We Need Formal Methods?
000000800

Property Violation

aircraft request and controller request interleave

if (processing request == 1) { return "request ignored"; }
if (processing request == 1) { return "request ignored"; }

processing request++;
processing request++; processing request is now 2!

response = check_request(request);

if ((TSAFE_command == 0) && (processing request == 1)) { FAIL!
processing_request--; //unset flag
return response;

} //end if

response = check _request(request);

if ((TSAFE_command == 0) && (processing.request == 1)) { FAIL!
processing request--; //unset flag
return response;

} //end if

DEADLOCK

in Yvonne Rozi Formal Methods Explained

Why Do We Need Formal Methods?
000000080

Can’t We Just Employ Fault-Tolerant Designs?

Fault-tolerant designs allow systems to continue operating in the
presence of faults.

For hardware systems, fault-tolerance is achieved using redundant
components, voting strategies, physical isolation, and algorithmic
filtering.
@ Hardware fault tolerance is most successful in recovering from physical
failures.

For software systems, fault-tolerance is achieved by having independent
programming teams create several versions of the software from the same
system specification. Voting resolves any conflicts.

@ The idea is to count on separate, redundant copies to fail independently.

n Yvonne Rozier Formal Methods Explained

Why Do We Need Formal Methods?
00000000@

Fault Tolerance # Software Reliability

© Redundant software versions cannot be proven to be independent.?

© Multiple redundant copies are created from the same requirements.
Faulty requirements mean all copies are also faulty. Formal methods
can debug requirements. ..

© Programmers make the same mistakes, even when programming
independently. 3

© Redundancy adds complexity and complications in designing the
voting algorithm and strategies for independent development.

2Ricky W. Butler and George B. Finelli. The Infeasibility of Quantifying the
Reliability of Life-Critical Real-Time Software.
3John C. Knight, Nancy G. Leveson. An Experimental Evaluation of the

n Yvonne Rozier Formal Methods Explained

Why Don’t We Formally Verify Everything?
°

Why Don't We Verify Every Safety-Critical System at
NASA?

@ Systems are not designed for verification.

@ Arms race: tools must scale to handle every system that is.

These problems are ranked in order! Problem #1 is the biggest obstacle
to formal verification at NASA.

JOWA STATE | Laboratory for

Kristin Yvonne Rozier Formal Methods Explained

Why Don’t We Formally Verify Everything?
0000

Problem 1: Systems are not designed for verification.

Black Boxes Cannot Be Formally Verified

Formal Methods involves logic, not magic.

@ Recall that model checking asks if system model M satisfies
(models) property ¢.

o If you don't know exactly what it does and what it's supposed to do,
how can you tell that it does exactly what it is supposed to?

IOWA STATE | Labora

Kristin Yvonne Rozier Formal Methods Explained

Why Don’t We Formally Verify Everything?
0000

Problem 1: Systems are not designed for verification.

Heuristics Are Not a Good Design Method for
Reliable Software

Heuristic Software Development Cycle:

Create simulation Run Observe Change simulation

based on initial) . ™| erroneous ™| parameters to fix
L. simulation R .

system description L behavior observed behavior

.

o Continually tweaking the system to fix faulty behaviors results in an
algorithm based on special cases.

@ Simulation results are necessarily bounded by confidence intervals
due to reliance on a finite set of trajectories.

In the end, do you really know what the system does for any input?

Formal Methods Explained

Why Don’t We Formally Verify Everything?
0000

Problem 1: Systems are not designed for verification.

Heuristics Are Not a Good Design Method for
Reliable Software

Heuristic Software Development Cycle:

Create simulation Observe Change simulation
. > Run > I .
based on initial) . erroneous parameters to fix
. simulation R .
system description L behavior observed behavior

.

Note this loop never terminates

o Continually tweaking the system to fix faulty behaviors results in an
algorithm based on special cases.

@ Simulation results are necessarily bounded by confidence intervals
due to reliance on a finite set of trajectories.

In the end, do you really know what the system does for any input?

Formal Methods Explained

Why Don’t We Formally Verify Everything?
0080

Problem 1: Systems are not designed for verification.

Some Systems Shouldn't Be Formally Verified

Formal verification is actually undesirable for some systems:

@ Systems where failure is not costly.
@ Systems where occasional failure is beneficial.
e Would you buy Software Version 2.0 if Version 1.0 worked perfectly?
@ Systems where we necessarily have inaccurate/unbounded
information or quantifiable uncertainty.
e Biological systems are already imperfect models of reality due to
limited understanding.
@ Systems whose structures aren't suited to formal specification.

e Natural language processing: natural languages are context-sensitive
and therefore cannot be represented by automata. Natural languages
are ambiguous by nature.

n Yvonne Rozier Formal Methods Explained

Why Don’t We Formally Verify Everything?
oooe

Problem 1: Systems are not designed for verification.

Solution: Design from the Start for Verification

A Better Software Development Cycle:

Design and specify | Describe and debug Model Generate code using -
system algorithm (M) essential properties Check verified translator ot
~_) ////

@ A system can only be verified if you know what it does and why it
should work.

@ Formal verification requires visibility into design details.

Formal methods can be used in the design phase to enhance
understanding and avoid logical flaws in algorithm /specification designs.

Formal Methods Explained

Why Don’t We Formally Verify Everything?
€000

Problem 2: Arms race: tools must scale to handle every system that is.

Formal Verification Success Stories

Formal verification techniques have been successfully used for a wide
variety of real systems:
@ Aerospace:
o Air traffic control i.e. Small Aircraft Transportation System (SATS)
e KB3D, TCAS: algorithms for 3-D conflict detection and resolution
e Java pathfinder: verify executable Java bytecode (on Mars rovers!)
o Cars:
e Self-driving cars: Toyota, Mitre, others
e Toyota Prius court case
Intel chips:
e floating-point mathematical functions and other properties of
hardware designs
e post-silicon revisions to fix bugs found at silicon test
Protocols: TCP/IP, communication protocols
Microsoft device drivers (e.g., SLAM)

@ Program termination and liveness (via Terminator)

IOWA STATE

Kristin Yvonne Rozier Formal Methods Explained

Why Don’t We Formally Verify Everything?
0®00

Problem 2: Arms race: tools must scale to handle every system that is.

Solutions: Mitigate the State Explosion Problem

Model Checking is largely automated and gives counterexamples.
Theorem proving is well-suited to reasoning about very large state spaces.

State explosion problem: state spaces of real systems can be very large,
even infinite. This is the biggest challenge for model checking.
Mitigation:
@ Abstractions that capture all relevant aspects of the system design
but reduce the state space.

@ Data structures that conserve memory: efficient hashing, favorable
BDD variable ordering, etc.

@ Component-based verification that logically divides the system into
smaller components (good for parallelization!)

Kristin Yvonne Rozier Formal Methods Explained

Why Don’t We Formally Verify Everything?
0000

Problem 2: Arms race: tools must scale to handle every system that is.

Challenges and Directions for Future Research

@ Time vs. Space: Real systems have large state-spaces. It takes time
to fill large quantities of memory.

e Writing verification tools is hard. Many tools are not mature enough
for industrial use. Others are not widely available.
@ Tools are not fully automatic:
e Theorem Proving requires heavy user guidance.
e Model Checking requires knowledge of temporal logic, specification
strategies, and abstraction techniques.
e Verified specification/code translators are still primitive, do not
handle complex code structures like objects, templates, inheritance,
etc. Synthesis is taking off!

n Yvonne Rozier Formal Methods Explained

Why Don’t We Formally Verify Everything?
0000

Problem 2: Arms race: tools must scale to handle every system that is.

Challenges and Directions for Future Research

@ Time vs. Space: Real systems have large state-spaces. It takes time
to fill large quantities of memory.

e Writing verification tools is hard. Many tools are not mature enough
for industrial use. Others are not widely available.
@ Tools are not fully automatic:
e Theorem Proving requires heavy user guidance.
e Model Checking requires knowledge of temporal logic, specification
strategies, and abstraction techniques.
e Verified specification/code translators are still primitive, do not
handle complex code structures like objects, templates, inheritance,
etc. Synthesis is taking off!

Questions?

n Yvonne Rozier Formal Methods Explained

Why Don’t We Formally Verify Everything?
oooe

Problem 2: Arms race: tools must scale to handle every system that is.

Research Interests

AUTOMATED REASONING

Avionics/Flight Software
Satisfiability (SAT)/SMT
Al/Algorithms

@ Explainabilit

FORMAL SPECIFICATION
/"\b
N N
ANPANVARVAN
i s e
@ Specification Patterns

@ Specification Debugging
@ Consistency/Temporal Satisfiability Checking

DESIGN-TIME SAFETY ANALYSIS

o, T

@ Model Checking (Explicit and Symbolic)
@ Model Based Design

@ Requirements Elicitation

@ Temporal Logic Encoding

RUNTIME VERIFICATION
4 Y /]

R2U2 Engine @ Resource-limited Sanity Checking
System Health @ Automated Diagnostics/Prognostics
Management @ Real-time Intelligent Sensor Fusion

Kristin Yvonne Ro.

ds Explained

	What Are Formal Methods?
	

	Why Do We Need Formal Methods?
	

	Why Don't We Formally Verify Everything?
	
	Problem 1: Systems are not designed for verification.
	Problem 2: Arms race: tools must scale to handle every system that is.

