
What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Formal Methods
Explained

Kristin Yvonne Rozier
Iowa State University

Applied Formal Methods
August 22, 2021

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Who Are They?

Edmund M. Clarke E. Allen Emerson Joseph Sifakis

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

The 2007 Turing Award

Edmund M. Clarke E. Allen Emerson Joseph Sifakis

For developing Model-Checking into a highly effective verification
technology, widely adopted in the hardware and software industries.

What are Model Checking, Formal Methods in general?

Why do we need Formal Methods?

Why don’t we formally verify all systems?

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

The 2007 Turing Award

Edmund M. Clarke E. Allen Emerson Joseph Sifakis

For developing Model-Checking into a highly effective verification
technology, widely adopted in the hardware and software industries.

What are Model Checking, Formal Methods in general?

Why do we need Formal Methods?

Why don’t we formally verify all systems?

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

The 2007 Turing Award

Edmund M. Clarke E. Allen Emerson Joseph Sifakis

For developing Model-Checking into a highly effective verification
technology, widely adopted in the hardware and software industries.

What are Model Checking, Formal Methods in general?

Why do we need Formal Methods?

Why don’t we formally verify all systems?

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

The 2007 Turing Award

Edmund M. Clarke E. Allen Emerson Joseph Sifakis

For developing Model-Checking into a highly effective verification
technology, widely adopted in the hardware and software industries.

What are Model Checking, Formal Methods in general?

Why do we need Formal Methods?

Why don’t we formally verify all systems?

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

The 2007 Turing Award

Edmund M. Clarke E. Allen Emerson Joseph Sifakis

For developing Model-Checking into a highly effective verification
technology, widely adopted in the hardware and software industries.

What are Model Checking, Formal Methods in general?

Why do we need Formal Methods?

Why don’t we formally verify all systems?

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Formal Methods

”Formal Methods” are mathematically rigorous techniques for the
specification, design, and verification of software and hardware systems.

Formal Methods:

Check that behaviors (statements in mathematical logic) always
hold in a system (specified in a logical language)

Symbolically examine the entire state space (all possible inputs)

Provide absolute assurance of a correctness or safety property

Given formal definitions of what a system does (M) and what it should
do (ϕ), formal methods can be used to show that M satisfies ϕ.

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Formal Methods

”Formal Methods” are mathematically rigorous techniques for the
specification, design, and verification of systems.

Formal Specification:

System requirements (properties) in mathematical logic

Formal Verification:

Check that requirements always hold in a system (specified in a
logical language)

Examine the entire state space (all possible inputs)

Provide absolute assurance of a correctness or safety property

Given formal definitions of what a system does (M) and what it should
do (ϕ), formal methods can be used to show that M satisfies ϕ.

Intuitively, the system does what you think it should do and nothing else.

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Why Use Formal Methods?

� �

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Formal Verification of an NGATS Communication Protocol

M : What the
system does

The auto-resolver sends flight commands to the aircraft.

The aircraft may request a specific flight command.

The controller may request a specific flight command

TSAFE commands override all others.

Requests cannot be made in the presence of conflict.

Only one request is registered at a time.

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

NGATS Communications Protocol Specifications

ϕ: How the system should behave

X “Every conflict is addressed”
Or, we can choose to specify a stricter version of this property:

X “Every conflict is addressed immediately (i.e in one time step)”

X “The system will never issue conflicting commands”

X “All conflicts are eventually resolved”

X “All controller requests are eventually addressed”

X “All aircraft requests are eventually addressed”

We can verify all of these behaviors hold via formal specifications . . .

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Propositional Logic Behavior Properties

Propositional Logic:
p, q Boolean variables
¬p not
p ∧ q and
p ∨ q or
p → q implies

Continuous systems necessarily involve a notion of time. Propositional
logic is not expressive enough to describe real systems.

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Propositional Logic Behavior Properties

Propositional Logic:
p, q Boolean variables
¬p not
p ∧ q and
p ∨ q or
p → q implies

Continuous systems necessarily involve a notion of time. Propositional
logic is not expressive enough to describe real systems.

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Temporal Logic Behavior Properties

Linear Temporal Logic (LTL) formulas reason about linear timelines:

a finite set Prop of atomic propositions

Boolean connectives: ¬, ∧, ∨, and →
temporal connectives:
Xϕ next time
ϕUψ until
ϕRψ release
�ϕ always, also called G for “globally”
♦ϕ eventually, also called F for “in the future”

Computational Tree Logic (CTL) reasons about branching paths:

Temporal connectives are proceeded by path quantifiers:
A for all paths
E exists a path

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Model Checking

AM,¬φ

M

EMPTY?

⊗

¬φ

A¬φ

Model checking finds disagreements between
the system model and the formal specification.

If there is disagreement, a counterexample trace is returned.
Otherwise, the system satisfies the specification.

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

A Simple System Represented As An Automaton

2-bit Binary Counter:

a marks the the start of a new number
b is the bit counter

00 01 10 11 . . .

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

How Is Model Checking Implemented?

Explicit Model Checkers:

Construct the state-space explicitly (i.e., create an automaton).

Search for a trace falsifying the specification.

For finite (safety) properties, look for an accepting run
For nonterminating linear properties, look for an accepting lasso by
finding strongly connected components in the automaton graph.

accepting lasso = counterexample trace

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Explicit-state Model Checking:
It’s Like a Fractal . . .

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Symbolic Model Checking:
It’s Like a Fractal Equation!

Equations that capture all relevant aspects of the system design but
reduce the state space.

= ∀n, xn = Frac(2nx + 0)

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

How Is Model Checking Implemented?

Symbolic Model Checkers:

Represent the model symbolically using Boolean formulas.

Analyze the model using Binary Decision Diagrams (BDDs) or
Satisfiability (SAT).

Reasoning:

increase efficiency

decrease memory usage

increase scalability

increase speed

binary decision diagram

All software (including continuous systems) is executed over Boolean logic.

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Theorem Proving

1 Describe the system in a formal language.

2 Satisfy type-checks and other proof obligations. (type-theoretic languages)

3 Introduce behavior properties as theorems that must be proven to
hold using:

the formal description of the system behavior
a set of logical axioms
a set of inference rules

Use rigorous logical deductions (i.e. each step follows from a rule of
inference and hence can be checked by a mechanical process.)

If the safety property does not hold, the programmer will encounter a
proof step that cannot be discharged and which describes the

circumstances of the bug.

Note this is a one-way implication: such a proof step could signify user error!

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Example Theorems in PVS

Let p1, p2 be planes.
Let a be an action that a plane p can take.

Soundness (safety) for separation assurance:
∀p1, p2 : (good actions taken) =⇒ dist(p1, p2) > D, where D is the
minimum separation distance

Completeness (liveness):
∀p∃a : good action(a, p)

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Example: Verifying NGATS Communication Protocol

Variables

AR command

TSAFE command

controller request

aircraft request

TSAFE clear

The auto-resolver sends flight commands to the aircraft.

The aircraft may request a specific flight command.

The controller may request a specific flight command

TSAFE commands override all others.

Requests cannot be made in the presence of conflict.

Only one request is registered at a time.

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

NGATS Communications Protocol Specifications

“Every conflict is addressed”
always(¬TSAFE clear → eventually TSAFE command)
Or, we can choose to specify a stricter version of this property:

“Every conflict is addressed immediately (i.e in one time step)”
always(¬TSAFE clear → next(TSAFE command))

“The system will never issue conflicting commands”
always(¬(AR command ∧ TSAFE command))

“All conflicts are eventually resolved”
always(¬TSAFE clear → eventually TSAFE clear)

“All controller requests are eventually addressed”
always(controller request → eventually ¬controller request)

“All aircraft requests are eventually addressed”
always(aircraft request → eventually ¬aircraft request)

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Formal Methods Give Absolute Assurance . . . at a Cost

There are great benefits!

Ex: Model checking returns a counterexample trace or assurance
one doesn’t exist! 1

Formal verification is hard:

Theorem proving is undecidable.

Model checking is intractable. (i.e., LTL model checking is
PSPACE-complete.)

Can’t we use something easier to achieve the same level of assurance?

testing

simulation

fault-tolerance

1with some caveats, such as that M and ϕ are correct, valid
Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Verification Methods

Testing proves the existence of the correct behavior for any given
input

Simulation scales testing and extends it to hypothetical systems

Fault tolerance designs resilient systems that fail safely

ALL of these methods are invaluable for producing robust systems

So why do we ALSO need formal methods?

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

The Donald == Donald Knuth

“. . .
Beware of bugs in the above code;

I have only proved it correct, not tried it.”
– Donald Knuth

https://staff.fnwi.uva.nl/p.vanemdeboas/knuthnote.pdf

Hint: they solve different problems . . .

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained

https://staff.fnwi.uva.nl/p.vanemdeboas/knuthnote.pdf


What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

The Random Testing Approach Does Not Work . . .
for Cyber-Physical or Software Systems

Random testing: Generate random trajectories through the state space.
Estimate the probability that the property holds to a certain level of
confidence.

There is no reason why if something works for two data points, that
it will work for data points in between.

To discover a bug: have to get lucky and guess the right test case.

Have to cover every data point to eliminate uncertainty.

In software, each point is its own boundary (can’t just check the
boundary conditions).

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

An Example . . . Traffic to a Website

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Example Continued

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Code Example: Request → Auto-Resolver

Specification:
Only one request is
registered at a time.

global Boolean processing request = 0;

function make request(request) {
//Only 1 request is allowed at a time

if (processing request == 1) {
//Already processing a request

return "request ignored";

} //end if

processing request++; //flag: we’re processing

//Examine the request

response = check request(request);

//Request cannot overrule TSAFE commands

if ((TSAFE command == 0)

&& (processing request == 1)) {
processing request--; //unset flag

return response;

} //end if

} //end function

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Property Violation

aircraft request and controller request interleave

if (processing request == 1) { return "request ignored"; }
if (processing request == 1) { return "request ignored"; }

processing request++;

processing request++; processing request is now 2!

response = check request(request);

if ((TSAFE command == 0) && (processing request == 1)) { FAIL!

processing request--; //unset flag

return response;

} //end if

response = check request(request);

if ((TSAFE command == 0) && (processing request == 1)) { FAIL!

processing request--; //unset flag

return response;

} //end if

DEADLOCK
Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Can’t We Just Employ Fault-Tolerant Designs?

Fault-tolerant designs allow systems to continue operating in the
presence of faults.

For hardware systems, fault-tolerance is achieved using redundant
components, voting strategies, physical isolation, and algorithmic
filtering.

Hardware fault tolerance is most successful in recovering from physical
failures.

For software systems, fault-tolerance is achieved by having independent
programming teams create several versions of the software from the same
system specification. Voting resolves any conflicts.

The idea is to count on separate, redundant copies to fail independently.

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Fault Tolerance 6= Software Reliability

1 Redundant software versions cannot be proven to be independent.2

2 Multiple redundant copies are created from the same requirements.
Faulty requirements mean all copies are also faulty. Formal methods
can debug requirements. . .

3 Programmers make the same mistakes, even when programming
independently. 3

4 Redundancy adds complexity and complications in designing the
voting algorithm and strategies for independent development.

2Ricky W. Butler and George B. Finelli. The Infeasibility of Quantifying the
Reliability of Life-Critical Real-Time Software.

3John C. Knight, Nancy G. Leveson. An Experimental Evaluation of the
Assumption of Independence in Multiversion Programming.

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Why Don’t We Verify Every Safety-Critical System at
NASA?

1 Systems are not designed for verification.

2 Arms race: tools must scale to handle every system that is.

These problems are ranked in order! Problem #1 is the biggest obstacle
to formal verification at NASA.

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Problem 1: Systems are not designed for verification.

Black Boxes Cannot Be Formally Verified

Formal Methods involves logic, not magic.

Recall that model checking asks if system model M satisfies
(models) property ϕ.

If you don’t know exactly what it does and what it’s supposed to do,
how can you tell that it does exactly what it is supposed to?

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Problem 1: Systems are not designed for verification.

Heuristics Are Not a Good Design Method for
Reliable Software

Heuristic Software Development Cycle:

Note this loop never terminates →

Continually tweaking the system to fix faulty behaviors results in an
algorithm based on special cases.

Simulation results are necessarily bounded by confidence intervals
due to reliance on a finite set of trajectories.

In the end, do you really know what the system does for any input?

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Problem 1: Systems are not designed for verification.

Heuristics Are Not a Good Design Method for
Reliable Software

Heuristic Software Development Cycle:

Note this loop never terminates →

Continually tweaking the system to fix faulty behaviors results in an
algorithm based on special cases.

Simulation results are necessarily bounded by confidence intervals
due to reliance on a finite set of trajectories.

In the end, do you really know what the system does for any input?

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Problem 1: Systems are not designed for verification.

Some Systems Shouldn’t Be Formally Verified

Formal verification is actually undesirable for some systems:

Systems where failure is not costly.

Systems where occasional failure is beneficial.

Would you buy Software Version 2.0 if Version 1.0 worked perfectly?

Systems where we necessarily have inaccurate/unbounded
information or quantifiable uncertainty.

Biological systems are already imperfect models of reality due to
limited understanding.

Systems whose structures aren’t suited to formal specification.

Natural language processing: natural languages are context-sensitive
and therefore cannot be represented by automata. Natural languages
are ambiguous by nature.

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Problem 1: Systems are not designed for verification.

Solution: Design from the Start for Verification

A Better Software Development Cycle:

A system can only be verified if you know what it does and why it
should work.

Formal verification requires visibility into design details.

Formal methods can be used in the design phase to enhance
understanding and avoid logical flaws in algorithm/specification designs.

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Problem 2: Arms race: tools must scale to handle every system that is.

Formal Verification Success Stories

Formal verification techniques have been successfully used for a wide
variety of real systems:

Aerospace:
Air traffic control i.e. Small Aircraft Transportation System (SATS)
KB3D, TCAS: algorithms for 3-D conflict detection and resolution
Java pathfinder: verify executable Java bytecode (on Mars rovers!)

Cars:
Self-driving cars: Toyota, Mitre, others
Toyota Prius court case

Intel chips:
floating-point mathematical functions and other properties of
hardware designs
post-silicon revisions to fix bugs found at silicon test

Protocols: TCP/IP, communication protocols
Microsoft device drivers (e.g., SLAM)
Program termination and liveness (via Terminator)

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Problem 2: Arms race: tools must scale to handle every system that is.

Solutions: Mitigate the State Explosion Problem

Model Checking is largely automated and gives counterexamples.
Theorem proving is well-suited to reasoning about very large state spaces.

State explosion problem: state spaces of real systems can be very large,
even infinite. This is the biggest challenge for model checking.

Mitigation:

Abstractions that capture all relevant aspects of the system design
but reduce the state space.

Data structures that conserve memory: efficient hashing, favorable
BDD variable ordering, etc.

Component-based verification that logically divides the system into
smaller components (good for parallelization!)

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Problem 2: Arms race: tools must scale to handle every system that is.

Challenges and Directions for Future Research

Time vs. Space: Real systems have large state-spaces. It takes time
to fill large quantities of memory.

Writing verification tools is hard. Many tools are not mature enough
for industrial use. Others are not widely available.

Tools are not fully automatic:

Theorem Proving requires heavy user guidance.
Model Checking requires knowledge of temporal logic, specification
strategies, and abstraction techniques.

Verified specification/code translators are still primitive, do not
handle complex code structures like objects, templates, inheritance,
etc. Synthesis is taking off!

Questions?

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Problem 2: Arms race: tools must scale to handle every system that is.

Challenges and Directions for Future Research

Time vs. Space: Real systems have large state-spaces. It takes time
to fill large quantities of memory.

Writing verification tools is hard. Many tools are not mature enough
for industrial use. Others are not widely available.

Tools are not fully automatic:

Theorem Proving requires heavy user guidance.
Model Checking requires knowledge of temporal logic, specification
strategies, and abstraction techniques.

Verified specification/code translators are still primitive, do not
handle complex code structures like objects, templates, inheritance,
etc. Synthesis is taking off!

Questions?

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained



What Are Formal Methods? Why Do We Need Formal Methods? Why Don’t We Formally Verify Everything?

Problem 2: Arms race: tools must scale to handle every system that is.

Research Interests
Automated Reasoning

Avionics/Flight Software

Satisfiability (SAT)/SMT

AI/Algorithms

Explainability

Formal Specification

Specification Patterns

Specification Debugging

Consistency/Temporal Satisfiability Checking

Design-time Safety Analysis

Model Checking (Explicit and Symbolic)

Model Based Design

Requirements Elicitation

Temporal Logic Encoding

Runtime Verification

R2U2 Engine

System Health
Management

Resource-limited Sanity Checking

Automated Diagnostics/Prognostics

Real-time Intelligent Sensor Fusion

Laboratory for
Temporal Logic Kristin Yvonne Rozier Formal Methods Explained


	What Are Formal Methods?
	 

	Why Do We Need Formal Methods?
	 

	Why Don't We Formally Verify Everything?
	 
	Problem 1: Systems are not designed for verification.
	Problem 2: Arms race: tools must scale to handle every system that is.


