
Software and Systems Modeling
https://doi.org/10.1007/s10270-024-01232-7

SPEC IAL SECT ION PAPER

Extract, model, refine: improvedmodelling of program verification
tools through data enrichment

Sophie Lathouwers1 · Yujie Liu1 · Vadim Zaytsev1

Received: 6 May 2023 / Revised: 17 June 2024 / Accepted: 19 September 2024
© The Author(s) 2024

Abstract
In software engineering, models are used for many different things. In this paper, we focus on program verification, where
we use models to reason about the correctness of systems. There are many different types of program verification techniques
which provide different correctness guarantees. We investigate the domain of program verification tools and present a concise
megamodel to distinguish these tools. We also present a data set of 400+ program verification tools. This data set includes the
category of verification tool according to our megamodel, practical information such as input/output format, repository links
and more. The practical information, such as last commit date, is kept up to date through the use of APIs. Moreover, part of
the data extraction has been automated to make it easier to expand the data set. The categorisation enables software engineers
to find suitable tools, investigate alternatives and compare tools. We also identify trends for each level in our megamodel.
Our data set, publicly available at https://doi.org/10.4121/20347950, can be used by software engineers to enter the world of
program verification and find a verification tool based on their requirements. This paper is an extended version of https://doi.
org/10.1145/3550355.3552426.

Keywords Program verification · Megamodelling · Data enrichment · Data extraction

1 Introduction

Program verification (PV) is a field that has always enjoyed
very high expectations, and suffered from them as well. Its
objectives are mostly to provide ways to prove that a system
satisfies certain requirements. The underlying techniques are
typically based on rigorous mathematical reasoning or an
exhaustive analysis of the state space, thereby giving soft-
ware engineers stronger guarantees than testing. It is often
accepted that to use program verification (or formal methods
in general), one needs to specify their system in a formal

Communicated by N. Bencomo, M. Wimmer, H. Sahraoui, and E.
Syriani.

B Vadim Zaytsev
vadim@grammarware.net

Sophie Lathouwers
sophie.lathouwers@gmail.com

Yujie Liu
yujie.liu.public@gmail.com

1 Formal Methods and Tools, University of Twente, Enschede,
The Netherlands

notation and thus have considerable formal background to
do it in a correct and useful way [22].

To simplify, for the rest of the paper we use the established
team “program verification” to mean verification (confor-
mance evaluation) of programs (executable models). Hence,
it covers generative techniques, testing, model checking,
theorem proving, etc, of source code, automata, Petri nets,
transition systems, etc.

Adopting verification tools has shown to present not only
technical challenges, but also organisational, social andman-
agerial ones [28], similar to challenges faced by advanced
model-driven engineering tools [49]. PV tools are particu-
larly difficult, because even demonstrating potential benefits
of their use is highly nontrivial and relies on users having very
specific knowledge of the underlying techniques. For the tool
developers, the tools themselves often serve as a means to an
end, as an opportunity to demonstrate the extent of appli-
cability of their techniques, to exemplify the problems that
could possibly be tackled, and to enter an existing subdomain.
Some subdomains are accompanied by sets of mature bench-
markswhichmake comparing techniques by comparing tools
a very attractive and attainable goal. Examples include pro-
gramming language theory [8], software verification [16] and

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-024-01232-7&domain=pdf
http://orcid.org/0000-0001-7764-4224
https://doi.org/10.4121/20347950
https://doi.org/10.1145/3550355.3552426
https://doi.org/10.1145/3550355.3552426


S. Lathouwers et al.

quantitative verification [44]. Admittedly, many tools stay in
a prototype phase, and being actively developed only till a
certain point: until the tool can handle the minimal set of
benchmarks, or until the deadline for submitting the paper
explaining the underlying techniques, or until graduating
from a PhD project.

Besides techniques and tools, there are multiple sources
of information to consider. Papers themselves are an obvious
source, well-archived on publishers’ websites, but requiring
high qualifications to be considered readable and understand-
able. They are also hard-dated, meaning that an average
good paper contains detailed comparison of the proposed tool
with its existing counterparts, but no comparison or relation
to counterparts that were created after the publication. The
papers often refer to product or project pages,which are prone
not only to being outdated for reasons mentioned above, but
also to being removed due to the jobhopping nature of the
academic world: when the principal investigator finishes the
project and moves to another institution, it is not guaran-
teed that the project page will be preserved by their original
employer. If available, such websites are also wildly varying
in the nature of their content: some literally repeat the con-
tents of the papers, while others complement it with valuable
information, illustrations, and links.

Another extremely valuable source of information — pri-
marily about the tools and not always about the techniques—
is the code repositories. It has become fairly commonplace
in recent years to either release the tools for (limited) pub-
lic use to enable empirical replicability, or expose the entire
development history in a form of versioned codebase (typ-
ically through git, occasionally hg or svn). There are at
least three benefits of repositories: (1) the artefacts become
much more tangible, and only require several natural steps
(like cloning the repository) to set themselves up on the user’s
computer instead of extracting them from the paper text; (2)
the version history is a technically substantiated claim to the
amount of work and to its authorship; and (3) linking tools
to one another by shared contributors plays the same social
role as linking papers by shared coauthors.

To summarise the problems:

• existing techniques are hard to understand and assess
their applicability without very deep specific knowledge;

• tools are hard to classify conceptually and appropriately
relate to techniques;

• information sources are dispersed, partly unavailable and
partly unreliable.

With the vision to open up the arsenal of PV tools and
techniques to a broader public of software modellers and,
even broader, software engineers, we have developed a meg-
amodel of program verification tools. The megamodel can
help answering questions like “what am I expected to pro-

vide as input to use tool X?” or “what other tools exist for the
same problem domain as tool X?”, or even “when was the
last time the code of tool X was updated?”. We will elaborate
on the megamodel and its PV0–PV6 levels in Sect. 3.

With this megamodel, we show that there are many dif-
ferent types of PV tools, and those types can be grouped
in categories that form a hierarchy. Thus, if a tool from
one category comes fundamentally short to solve the end-
user’s problems, it can be considered to seek alternatives in a
broader category. To concretise themegamodel, we complete
it with a data set into which we have collected information
about 450+ PV tools, frameworks and languages, published
recently at two top conferences in the PV domain known for
their tool paper hospitality: CAV and TACAS. The data set
is available publicly on GitHub, with a reader-friendly inter-
connected hypertextual frontend at https://slebok.github.io/
proverb.
We strongly believe that making the data set freely accessi-
ble for exploration, makes it an attractive starting point for
software engineers to traverse the domain of program veri-
fication. Section 4 contains more information about the data
set, as well as our methods of gathering the data, categorising
and enhancing it.

In Sect. 5, we report some preliminary lessons we have
learned ourselves by looking at the collected information,
level by level, and analysing some of its trends. The fact that
our megamodel splits the PV domain into distinct groups
recognisable fromprior research, is considered here as a form
of evaluation and evidence that the megamodel is viable and
useful.

This paper is an extended version of the conference publi-
cation by [58]. Besides going into more details for the lack of
space constraints and in order to make this paper more self-
contained (with respect to its own website and repository),
the additional contributions here are:

• Linking this line of research to the current research trends
on artefacts and artefact evaluations (Sect. 2).

• Automating further expansion of the data set by using
heuristics to identify tools in newpublications (Sect. 4.1.2),
since providing tool support in updating the data set is
instrumental for its continuous maintenance and growth.

• Automating information extraction from conference pro-
ceedings (Sect. 4.1.3), significantly lowering the barrier
to add new entries.

• Refining and enriching the data set “horizontally” by
adding more information, more precise information or
more up to date information with the help of several APIs
(Sect. 4.2). For instance, the date of the last update does
not have to be manually checked but is inferred from the
git history of the tool repository.

123

https://slebok.github.io/proverb
https://slebok.github.io/proverb


Extract, model, refine: improved modelling of program verification tools...

• Providing a more conceptual/clean approach to model
each tool based on an ontology (Sect. 4.2.1) instead of an
ad hoc template — cf. [58, section 3.1.3].

• Using these methods for extending the data set into sev-
eral dimensions (Sect. 4.2) and reporting statistics on that
(Sect. 4.3).

• Planning an extensive research roadmap for the future of
this project (Sect. 6).

2 Related work

When it comes to related work, we refer the attention of
the readers to in-depth overviews of problems in adoption
of program verification, formal methods, model-driven engi-
neering anddomain-specific languages,whichwe summarise
below.

In 2005, Bodeveix, Filali, Lawall, and Muller [19] pro-
vided a side-by-side comparison of two solutions to the
same case study problem (kernel-level process scheduling):
one done with software modelling (in particular, a domain-
specific language), and the other with formal methods, with
a conclusion that a formal specification provides at least as
good of a model as a DSL one. The modern view on this
matter is to combine the power of two sides of this debate,
and link program verification to formal DSLmodels [5]. This
can be done either way: by augmenting the existing system
with an internalDSL and using information encoded there for
verification purposes [12] or by generating formally correct
DSL code [68].

Broadfoot andBroadfoot [22] argued that in the domain of
embedded software, there are many systems which are both
business-critical and untestable with conventional means.
Their concluding advice was to rely on provably correct
designs which are transformed into code by using only tools
that are provably correct.Woodcock, Larsen, Bicarregui, and
Fitzgerald [91] provide what seems to be the most extensive
survey on formal methods, their prevalence in academic lit-
erature and in industrial experience. They also listed a few
of the most popular tools by name, without introducing any
exhaustive coverage criteria like we will do in Sect. 4.

Bucchiarone et al. [23] stressed the important of informal
modelling as a way to attract new users to MDE. In this
case, informal modelling does not mean the lack of formal
methods: it designates the ease of use for novice modellers
and the ability of the metamodel to express incomplete and
uncertain information. Under the hood such products can still
rely on highly complex science in the same way an internet
search query relies on MapReduce and data synchronisation
with a mobile device relies on lenses.

Davis et al. [28] conducted a large study of 31 experts
from 9 companies, and identified that the top three barriers
for adopting formal methods in the industry are education,

tools quality and personnel changes, while the top three
improvements were education, tool integration, and creating
and disseminating evidence of the benefits of formal analysis.
Tomassetti and Zaytsev [83] combined personal experiences
of two industrial experts in the field of domain-specific lan-
guages and summarised the real advantages of using DSLs
next to their adoption problems of different nature.

Klösch and Eixelsberger [52] provided a fairly extensive
yet concise list of explicit and factual challenges that the soft-
ware industry faced when solving the Y2K problem as well
as conversion from local currencies to Euro. Their structured
list was also broad in nature and covered many aspects from
formal compliance validation to organisationalworkarounds.
More than two decades later, Nurwidyantoro et al. [66, 67] as
well asWhittle, Ferrario, Simm, andHussain [86] argued that
human values such as responsibility, transparency, creativ-
ity and equality represent a substantial fraction of software
engineering challenges and difficulties, yet are heavily under-
represented in methodological research.

If we were to summarise all these extensive studies on rel-
atively well-known problems, we would have to admit that
most of them are related to tools, their prototype-level qual-
ity, notorious unavailability, lack of support and sufficiently
reliable documentation, etc.

Over the years, many ontologies, taxonomies and surveys
have been published about program verification. However,
these works tend to target either a specific subset of pro-
gram verification, e.g. runtime verification [36], high-level
synthesis [61] or a specific domain, e.g. vehicular domain
[78], smart contracts [45], railway system design [37], pro-
grammable logic controllers [40]. Unlike these works, we
do not focus on a subset of PV, but aim to deliver both a
megamodel to explain tools, as well as an easily accessible
(and extensible!) repository with a large data set of classified
tools.

The work that is closest to ours is a report by Punnoose,
Armstrong, Wong, and Jackson [72] that presents several
verification techniques in detail. It covers a broad variety of
techniques including model checking, verification condition
generation and correct-by-construction design. However,
they only mention a few tools per technique, whereas we
consider all PV tools that we could identify in publications.
Nonetheless, this report can also be a nice starting point for
engineers.

When it comes to repositories, we also do not claim out-
right novelty. Over the years, several projects have tried to
achieve more or less similar goals. For instance, the Verified
Software Repository [18] was intended to become a col-
lection of tools, verified programs, benchmarks and results.
Unfortunately, it was last updated in 2009. Schlick et al. [77]
have also proposed to set up a repository to make formal
methods more accessible to users in the industry. A large
part of their work focuses on the obstacles that limit the adop-

123



S. Lathouwers et al.

tion of formal methods in industry. Some of these obstacles
include the maturity of tools, difficulties in finding the right
methods and lack of ways to easily compare different tools.
This is in linewith our experience and the researchmentioned
in Sect. 1. Like us, Schlick et al. [77] believe that the aware-
ness and comparability between formal methods should be
improved. To achieve this, Schlick et al. [77] use notable
success stories to identify key information that should be
included in a formal methods repository. They then present
a vision of a repository and why it would be beneficial. They
give a repository structure that includes (1) experiment data,
(2) applications, (3) problemdescriptions, (4) formalisations,
(5) usage patterns, and (6) tools. However, to the best of our
knowledge, this repository has not yet been instantiated, and
remained a dream. One could consider our data set as a first
instantiation of the “Tool" part of their proposed repository
structure. In the future it could be combined with other data
to form a complete repository as proposed by Schlick et al.
[77], including data such as experiments and applications.

An important aspect for tools in our data set is their avail-
ability and reusability. There have been several efforts to
evaluate the reusability of artefacts. Baldassarre, Ernst, Her-
mann, Menzies, and Yedida [10] present the Department of
Reuse that records the reuse of research, including 8 differ-
ent types of reuse such as tool reuse and data set reuse. Both
Winter et al. [89] and Hermann, Winter, and Siegmund [47]
have gathered data to evaluate whether artefact evaluations
were as effective as hoped. WhereWinter et al. [89] focus on
the availability of artefacts, documentation practices, hosting
platform and citation count, Hermann,Winter, and Siegmund
[47] take a different approach and focus on the community’s
expectations for such artefacts. We consider all these contri-
butions to be complementary to our research as they could
provide information about the (re)usability of tools in our
data set. While we are interested in such data, our interest is
in whether tools are usable in practice as opposed to its impli-
cations for the academic sphere in terms of the effectiveness
of artefact evaluations or its relation to citation counts which
is explored in the previously mentioned works.

Other directions for future work and consequences of this
project, are considered in Sect. 6.

3 Themegamodel of PV-levels

In this section, we introduce the seven levels of our meg-
amodel: PV0, PV1, PV2, PV3, PV4, PV5 and PV6 (see
Fig. 1).

Intuitively, higher levels give the user more correctness
guarantees, though typically at the cost of more user effort,
and lower level tools are usually less strict and thus do not
require as much PV expertise to be effectively applicable.

Fig. 1 Each ellipse indicates the potential correctness guarantees that
can be acquired by using a tool of that level. PV0 tools give the least
guarantees of correctness, whereas PV6 tools allow the user to work
towards maximum correctness guarantees. Note that these indicate the
potential of each level; a tool may only support a little piece of a level

Since the ultimate goal of PV is to prove correctness of
the artefact in some form and within some domain, we will
use the classic division of roles in a correctness proof. It was
originally introduced by Goldwasser, Micali, and Rackoff
[41], we use the more widespread modern terminology here
[88]:

Claim

Prover Verifier
argument

In short, there exists a claim of some sort (e.g. “x ∈ S” or “the
program has no memory leaks” or “all models are wrong”),
which is provided to both the prover and the verifier. The
prover is very clever and can perform sophisticated manip-
ulations and computations. Its goal is to produce arguments
supporting the claim, but the prover can also be biased and
prone to producing false positive arguments. The verifier
has some way of checking the arguments and, depending
on its verdict, declaring the claim accepted or rejected. We
will be illustrating each of the PV tool levels with explana-
tions, examples and also differences on this simple scheme.
In the subsequent diagrams we will also use green colour to
highlight the main contributing elements that make someone
decide to use a tool of this particular level.

123

https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv2.html
https://slebok.github.io/proverb/pv3.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv5.html
https://slebok.github.io/proverb/pv6.html


Extract, model, refine: improved modelling of program verification tools...

Artefact

PV0

[PV0] Software engineers always work with abstractions
and models of reality. Once a software entity satisfies the
three properties of the modelling theory [81], it can be seen
as a model. These three are the mapping property (elements
of the model represent some elements of the real entity being
modelled), the reduction property (only the most important
aspects of the real entity are being modelled and others
are being abstracted from), and the pragmatic property (the
model has a purpose). Formal models are a subset of such
models, which are clean and well-formed, and often built
with the use of some existing mathematical theories. For
example, formal models often cover domain-specific vari-
ations of automata. In PV0, such a formal model may exist
but it is often implicit and is used neither to obtain nor to
verify any correctness guarantees.

Artefact

Solver

PV1

[PV1] Once a formal model can be operated on by a soft-
ware system, it can also be automatically checked for internal
consistency and well-formedness, by a model solver. For
instance, if the underlying theory states that a model of a
process is some specific automaton with one starting state
and one or more final states, and all transitions labelled with
unique names, then a solver can check that all these properties
indeed hold. The more complex the model, the more difficult
it could be to make such a solver for it: for example, unique-
ness is relatively easy to check on strings (which we assume
for transition labels in our previous example), but it is notice-
ably harder to define and enforce even on database records,
where single columns (such as “first name”) often contain
non-unique values, and combinations are often unreliable
due to incompleteness and subtle tolerable inconsistencies
(such as a phone number mismatch). From the correctness
perspective, a PV1 tool plays a role of a verifier, and a prover
does not exist since the verifier does not need any arguments
on top of the ability to observe the given model.

Artefact

Synthesiser

PV2

[PV2] The opposite situation is also commonplace: if a
user makes a model of their wishes, often taking a form of
an almost-consistent artefact with holes to be filled, then one
can build a tool to fill in those gaps and infer them from
the context. Sources of information can be different, rang-
ing from domain common sense (for example, we obviously
want our parallel programs to not get stuck waiting for one
another’s resources) to constraints and instructions explicitly
specified by the user. In a sense, if we want to consider the
Eclipse Modelling Framework as a proof system, it would
fall into this category because it can produce the textual code
of classes that conform to the inheritance structure and the
interfaces specified in the class model. In PV, such programs
are often said to solve problems of synthesis and repair, and
use generative techniques to create test data, repair known
categories of defects, implement queries, generate neural
networks fitting for a particular grid, or just to configure
a universal algorithm with automatically obtained balanced
values. PV2 tools help users to create software artefacts —
either bygenerating them fromscratch or byproviding signif-
icant assistance in the incremental process of creating them
semi-automatically. If the output of a PV2 tool is expected
to be processed by another automated component, then the
tool belongs on a higher PV-level.

Artefact
&

Properties

Specification 
Provider Verifier

specification

PV3

[PV3] Combining the two components into a] symmetric
setup (cf. Fig. 1), in the simplest case we get a situation when
a user explicitly states what properties of a formalmodel they
wish to have (beyond well-formedness), and there is an auto-
mated property checker, conceptually decomposable into
two parts: a prover that turns each property into a convincing
argument and a verifierwhich validates the convincing power
of such arguments. A typical example of a property checker
allows the developers to add assertions to their code, spec-
ifying preconditions, postconditions and invariants around
a code fragment, thus allowing additional formal ways to

123

https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv2.html
https://slebok.github.io/proverb/pv2.html
https://slebok.github.io/proverb/pv2.html
https://slebok.github.io/proverb/pv3.html


S. Lathouwers et al.

validate its correctness. These assertions do not have to be
deployed to the end-user, but serve as a powerful tool for the
developer to verify the product beforehand. Some checkers
have a very extensive formal language to write properties in,
usually a variant of some special kind of logic, e.g. temporal
logic [57, 71].

Artefact
Specification

Property 
Generator Verifier

properties

PV4

[PV4] On the previous level, the burden to create verifiable
properties, was on the end-user of a tool: assertions had to be
explicitly written, and invariants had to be provided. How-
ever, in some cases it is possible to automate the creation of
desired properties as well as their verification — since such
techniques require an extensive specification of the desired
behaviour, and often focus on only one paradigm, we call
them monoverifiers. They are very useful tools in debug-
ging, because if used correctly, they can significantly lower
the chances of having a particular category of defects, some-
times up to eliminating the very possibility of such a defect
ever occurring. For instance, think of a parallel system being
checked for deadlocks or a garbage collector checked for the
lack of memory leaks. Essentially, monoverifiers verify that
the supplied formal model corresponds to the expectations
of their own built-in specification.

Some monoverifiers offer a choice of checking one or
more of a larger set of correctness specifications, in which
case we still classify them to belong to PV4, even though the
mono- prefix no longer fits — as long as the end-user has no
direct control over the specifications themselves. Also most
monoverifiers embrace the fact that their generated properties
cannot always cover the end-user’s needs, and allow for direct
manual specification of additional properties—which allows
us to claim that PV4 functionalities are a strict superset of
PV3 functionalities.

Artefact
Specification

Specification 
Compiler Verifier

properties
properties

PV5

[PV5] When the tool users have an opportunity or obli-
gation not only to specify which properties of the system to
check for or how to infer them, but also to build their own

specifications, we get to specification compilers. Such com-
pilers usually have a language used to write specifications
in, sometimes based on a domain-specific notation, and sup-
port this entire language by compiling its instances in some
automated way to verify their correctness and compatibility.
With those, you can build your own specifications ofmemory
management strategies, your own communication protocols,
and so forth. To continue with examples from the previous
paragraph: when a PV4 tool could check for deadlock free-
dom, a PV5 tool would require a formal specification of the
concurrency model, accompanied with a definition of what
constitutes a deadlock state. Obviously, some PV4 tools are
built on top of PV5 frameworks by essentially supplying a
useful singular model.

Artefact
Specification
Properties

Proof 
Assistant Verifier

proof

PV6

[PV6] If your program verification tool can not only han-
dle different specifications, but also infer correctness of the
proof of the needed property, then it belongs among the proof
assistants. This category is the most powerful one that we
have encountered, which means both that it is the hardest and
most demanding to use, as well as capable of producing the
strongest guarantees. However, as one can see from the dia-
gram we provided, it bears some similarities with the PV1
level, since there is very limited automation and tool support
in composing the arguments for correctness. The proof needs
to bewritten by the end-user, and the tool can only offer some
assistance in verifying that the proof is indeed correct. Some
of PV6 tools can feel to their users as if they also help them
to compose the steps of the proof, but under closer inspec-
tion this help comes from the tool knowing which proof step
would succeed in reaching a user-stated goal, and not from
the tool relying on some generative algorithms. Within the
claim/prover/verifier paradigm, proof assistants offer power-
ful techniques on behalf of the verifier and not the other two
components.

4 Data set of verification tools

To help users find a suitable PV tool, we have prepared a
data set of tools categorised according to the megamodel
we have just explained in Sect. 3. This makes it easier to
discover which tools are available, to find tools using similar
techniques, as well as to find tools that target similar domains

123

https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv3.html
https://slebok.github.io/proverb/pv5.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv5.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv5.html
https://slebok.github.io/proverb/pv6.html
https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv6.html


Extract, model, refine: improved modelling of program verification tools...

Fig. 2 An overview of the different steps that have been undertaken to set up the data set of program verification tools

and problems. The data set, called ProVerB, is available1 at
https://slebok.github.io/proverb/. Each tool has its own file
which contains all of its data and metadata in Markdown
format.

The remainder of this section explains how the initial data
set has been created (Sect. 4.1), how we use open APIs to
enrich our data set (Sect. 4.2) and presents some statistics
about the data that was gathered (Sect. 4.3).

4.1 Methodology

A methodological overview can be seen in Fig. 2. Below we
will describe each step of our research method in detail.

4.1.1 Choose data sources

To find PV tools to include in the data set, we looked into two
popular conferences about verification of systems. Namely,
the International Conference on Computer Aided Verifica-
tion (CAV) and the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS). In the CORE conference ranking, they are clas-
sified as having respective ranks of A*2 and A.3 We have
decided to use papers from these conferences since both
accept and welcome papers about tools. Therefore, we could
expect a relatively high percentage of tool papers. Moreover,
CAV and TACAS started with artefact evaluations in 2015
and 2018 respectively, therefore we expect that many of the
tools presented here will also be available. We have looked
at tool papers from TACAS 2016–2021 and all papers from
CAV 2017–2022. We are still in the process of adding the
TACAS 2022 papers. We chose to use these recent years as
this makes it more probable that tools are still findable and
possibly maintained, yet still limited ourselves to at least
5 years of each conference in order to gather a substantial
amount of data.

This step resulted in 519 papers: 406 from CAV and 113
from TACAS.

1 The data set has also been archived at https://doi.org/10.4121/
20347950
2 CAV: http://portal.core.edu.au/conf-ranks/331/
3 TACAS: http://portal.core.edu.au/conf-ranks/1818/

4.1.2 Identify tools in papers

Next, we needed to identify the tools that were presented in
each paper. To help with this process, we have developed
a script that automatically identifies paper titles in the pro-
ceedings. Based on heuristics we try to identify the name of a
tool. Specifically, one can often find titles of the form “Tool
name: subtitle with explanation". Whenever a paper’s title
matches this heuristic pattern, we automatically extract the
tool’s name. For papers that do not adhere to this heuristic it
is still required to read the paper to identify tools.

For each paper we checked whether it contained a refer-
ence to a tool. If so, then we would tag this as one of the
following claims:

• Presents: the paper introduces a new tool;
• Extends: an existing tool gains new functionality in the
paper;

• Expands: the paper uses an existing tool as a basis for
building another tool;

• Uses: the paper uses an existing tool for a case study or
to check the correctness of an approach.

We only included tools that provided some form of cor-
rectness guarantees, to avoid including too many entries in
ProVerB. This still left us with some entries that were later
reclassified as not belonging to the PV domain (usually from
misinterpretations of claims “we use library X”).

4.1.3 Collect data

As a format for storing entries in the data set, we have chosen
Markdown. This provided the lowest entrance barrier and
maintenance cost, still combined with the opportunity to add
structure to the data (in our case, in the form of ####-level
sections). By choosing this format, we also hope to make
it easy for other people to contribute to the data set in the
future, since GitHub, our hosting platform for the data, even
provides inline editing functionality for Markdown pages.

After some pilot classifications we set up a generic tem-
plate for tool pages,whichhas proven tobequite resilient, and
after the first couple of sprints it stayed stable and unchanged
till the current moment. This template included a section
for all the information that we were interested in for a tool,
namely:

123

https://slebok.github.io/proverb/
https://doi.org/10.4121/20347950
https://doi.org/10.4121/20347950
http://portal.core.edu.au/conf-ranks/331/
http://portal.core.edu.au/conf-ranks/1818/


S. Lathouwers et al.

• Name of the program verification tool;
• Domain or application field;
• The type of the tool as self-identified by authors;
• Input that is required from the user;
• Input format;
• Output that is produced;
• Internal working of the tools, such as which tools it uses
as a backend;

• External relations to other tools, such as those that were
compared to this tool in the paper;

• Links to project pages, repositories and related papers;
• Dates when the tool and its documentation were last
updated;

• Reason why the tool was added to the data set.

Aside from the information mentioned above, we have also
started adding tags as textual annotations. Tags are used to
indicate whether a tool targets a specific language, domain,
technique, etc. This should make it easier for users to find
suitable tools. For example, there is a tag for tools that target
C programs, a tag for neural networks, a tag for hardware
verification, and so forth.

We start by creating anewpagebasedon the same template
for all tools. After the page has been created, we needed to
collect additional information from the corresponding paper
as well as the code base and project website if these were
available. Some sections were left empty if the data was not
available (e.g. the last modification data for tools without a
repository). If at least two tools referred to another tool, e.g.
because it was used as a back end or as a framework, then
this tool was added as well and received its own entry.

Some tools that we encountered were developed as pro-
totypes, up to the point that these did not have a name at all,
nor a link to an implementation. We decided to exclude such
tools as these tools were likely not developed andmaintained
for professional use. However, some tools included an arte-
fact, whichwasmostly still reliably available, so we included
this link in the entry whenever it existed.

Thedata set also includes pages about several specification
formats. A page for a format was created if the format was
not tool-specific, if it was used by more tools than one, or if
it was for some other reason conceptually separate from the
tool.

4.1.4 Definemegamodel

When the tool pages had been written, we contemplated the
initial setup of the megamodel based on similarities between
tools. The first versionwas already based on the input that the
user has to provide, ranging from the no input at all (besides
the already existing software artefact), to assertions, proper-
ties, specifications, theories and proofs. Several refinement
iterations later, based also on consulting the already available

domain knowledge [41, 88], we have arrived at the version
presented previously in Sect. 3.

4.1.5 Classify tools

Having designed the initial megamodel, we started the
process of classifying all the tools. Based on the tools’ semi-
structured description (cf. Sect. 4.1.3), we have assigned each
to a PV-level. While doing that, we have also consistently
provided a short description motivating this classification
by explaining what the tool does. In that way, a tool with
a description “verifies properties of a user-specified mem-
ory model” was clearly placeable at PV5, and the one with
“checks user-specified properties and memory safety of C
programs” was easily marked as deserving PV4. To pre-
vent misclassifications and improve inter-coder reliability,
the authors actively double checked each other’s verdicts
and had extensive discussions about arguable conclusions.
In such discussions, the classifying coauthor would usually
apply the definition of the chosen PV-level to argue that the
tool conforms to it, to be challenged by another coauthorwith
an alternative application of a different PV-level. In case of
conflicts, the original tool describing paper was consulted for
more detailed information sufficient to finalise the classifi-
cation.

Aside from the PV0–PV6 levels, there are two other cat-
egories: “no PV” for false positives and “frameworks” for a
possible levelmixture.We used “noPV” to explicitly exclude
entries that ended up, after close consideration, not perform-
ing any PV-related tasks. Such entries were mostly about
specification formats, but also about IDE plugins, unrelated
programming languages, libraries not performing any PV
tasks, etc. We felt that something like an alternative user
front end or a linear programming library do not belong to
PV0 either. “Frameworks”was used to classify collections of
tools: in many cases it was possible to determine the primary
objective of the collection and assign a framework to a proper
level as well, but in other cases such an assignment has not
been deemed sensible. For example, “Alloy” is used to refer
to the Alloy Analyser (which has its own entry on PV3),
or to the input level of the Alloy Analyser, or to the entire
ecosystem of Alloy models and their verifiers, — and is not
consistently PV-classifiable without explicit disambiguation.

4.1.6 Identify trends

Finally, after we classified all the tools, we could start to iden-
tify trends in each level of themegamodel. These trends could
be identified based on the short descriptions that were written
in the previous step, and require only occasional lightweight
double checking with the full data entry or the text of the
underlying paper. We will discuss these trends in more detail
in Sect. 5.

123

https://slebok.github.io/proverb/pv5.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv6.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv3.html


Extract, model, refine: improved modelling of program verification tools...

4.2 Data enrichment

The previous section has described how we set up the initial
data set. This section will describe how we have gathered
additional data by combining the initial semi-structured data
set with data from third-party open APIs such as GitHub and
Springer. For this process two main requirements were taken
into account namely:

• The structure of the data set should be preserved.
• The process should be automated to minimise manual
effort required for maintenance

The data set can be enriched in three independent dimen-
sions:

(1) Adding new entries for tools originally not present in the
data set (e.g. from newly published papers).

(2) Adding new information about tools which are already
in the data set (e.g. the time of the last update in the code
repository).

(3) Improving the information already present about the
tools (e.g. adding the titles of referenced papers).

For the (1) dimension, we have only reached partial
automation of the first step described in Sect. 4.1.3. We use
a script to automatically extract some information from the
conference proceedings using text pattern matching on the
PDFs. Specifically, we automatically try to identify the tool’s
name (as mentioned before in Sect. 4.1.2), links to additional
resources and keywords. The tool’s name and links are auto-
matically added to the appropriate sections in the template.
The keywords are used as an initial set of tags.

For the (2) dimension, one of the enhancements we found
useful is to rely on GitHub API instead of on manual inves-
tigation, to determine the time when the repository (either
determined by the PDF parser or added manually) was last
updated. This is not only fast, but also a much more reliable
process, which can be repeated as often as we would like
(which makes sense for tools that are actively being devel-
oped or maintained).

This brings us to the (3) dimension,which seems cosmetic,
but improves the experience of using ProVerB nevertheless.
For instance, originally, the data set only contained bare links
(URIs) for papers and repositories due to which the users
could not see, which paper they would be redirected to. As
a result, users often needed to click and browse several links
in order to find information that they needed, especially for
tools described in several papers. To make this process more
pleasant, we use API to automatically gather data about what
the links point to. This way, we can automatically retrieve
the latest commit date for repositories due to which users no
longer need to click on the repository link to see whether it is

still maintained, but also to replace faceless DOI URIs with
hyperlinked paper titles with Springer API.

To see a concrete example, let us focus on JayHorn, a
tool we randomly selected to serve as another example in
Table 2. Originally, its “Last commit date” section contained
the string “27 May 2021”, which was added manually by
one of the authors of this paper who classified it first. After
expanding in the (3) dimension, it contained more concretely
two reference points: “27 May 2021 (default branch)” and
“14 Dec 2021 (last activity)”, which was updated on 12
November 2023 when Philipp Rümmer, one of the contribu-
tors,merged pull request #161. For the same entry, the section
about related papers has changed as depicted in Fig. 3.

4.2.1 Workflow

To set up the automatic data enrichment, we first designed an
ontology for ProVerBwhich is closely related to the template
described in Sect. 4.1.3.

The current version of the ProVerB ontology includes
11 classes (see Fig. 4). The meaning of each class as well
as an example can be found in Table 1, with a concrete
example in Table 2. The classes that we are currently using
for data enrichment include Repository, Article,
CodeContributor and Writer. Links to repositories
and articles from the original data set are used to instantiate
the Repository and Article classes. These links are
then used to gather additional information, such as authors
and code contributors, through open APIs. This additional
information can be used to instantiate the classes such as
CodeContributor and Writer.

There are some classes in the ontology that are currently
unused but have been added for future study. For example,
the Format class has been added to explore possible input–
output relationships between tools.

With the ontology designed, we could now use this to
enrich our data set. The steps of this process have been illus-
trated in Fig. 5.

This process can be automated with GitHub workflows to
run once per week and automatically generate a PR with the
updates for the data set. The PR can then be reviewed before
merging to ensure the data is of sufficient quality.

4.2.2 Author-contributor relations

With the previously explained setup we can also collect
data about authors of papers and contributors to reposito-
ries. Specifically, we can explore “same-as” relationships to
identify people who were both author and code contributor.
This can provide valuable information about who to contact
when someone has questions about a tool.

This data is collected through the APIs, though it is not
yet added to the data set or shown on the website. The topic

123

https://github.com/jayhorn/jayhorn/pull/161


S. Lathouwers et al.

Fig. 3 Improvements in the “List of related papers” section for JayHorn: the before and after versions above and under the line. Note how manually
added information (conference names with preferred abbreviations) is still preserved after refinement

Fig. 4 ProVerB ontology

Table 1 Overview of the classes in the ProVerB ontologywith an expla-
nation of their meaning

Class Meaning

Tool A program verification tool in the
ProVerB data set

Format Input/output format of the tools and other
specification formats

Repository A URL indicating the repository of the
tool or another source where it can be
downloaded

Article A (preferably DOI) link pointing to a
publication about a tool

Concept All tags, application domains, etc. can be
concepts. Some specific concepts are
created as sub-classes to allow domain
experts to modify the ontology file for
tool classification

PV Seven hierarchy levels (PV0–PV6) that
classify tools. Each tool receives a
single classification

Conference The conference where an article was
published

Person Persons related to a tool, proceedings or
any other concepts

Writer Sub-class of Person: Authors of an Article

CodeContributor Sub-class of Person. Contributor to a
Repository

Table 2 The classes in the ProVerB ontology with an example of the
corresponding data for one concrete tool

Class Example

Tool JayHorn

Format Java bytecode (it supports Java class files,
Jar archives, or Android apk)

Repository https://github.com/jayhorn/jayhorn

Article https://doi.org/10.1007/978-3-030-
72013-1_29

https://doi.org/10.1145/3340672.3341113

https://doi.org/10.1007/978-3-030-
17502-3_16

https://doi.org/10.1007/978-3-319-
41528-4_19

Concept Java; Model checking

PV PV4

Conference TACAS’21; FTfJP’19; TACAS’19;
CAV’16

Writer Hossein Hojjat; Temesghen Kahsai;
Philipp Rümmer; Huascar Sanchez;
Martin Schäf; Ali Shamakhi

CodeContributor Martin Schaef
Philipp Ruemmer
Ali Shamakhi
Huascar Sanchez
Temesghen Kahsai; etc

of author contributions, as shown by Corrêa Jr., Silva, da
F. Costa, and Amancio [26], is far from being simple and/or
resolved even for “normal” academic literature, and deserves
even more careful investigation if we take tool making and
empirical validation into account.

4.3 Data set statistics

The data set contains 427 tools, 26 specification formats and
71 tags. The tools are split over the PV-levels as follows:

• PV0: 16 — cf. Sect. 5.1
• PV1: 98 — cf. Sect. 5.2
• PV2: 84 — cf. Sect. 5.3
• PV3: 74 — cf. Sect. 5.4
• PV4: 101 — cf. Sect. 5.5

123

https://slebok.github.io/proverb/jayhorn.html
https://github.com/jayhorn/jayhorn
https://doi.org/10.1007/978-3-030-72013-1_29
https://doi.org/10.1007/978-3-030-72013-1_29
https://doi.org/10.1145/3340672.3341113
https://doi.org/10.1007/978-3-030-17502-3_16
https://doi.org/10.1007/978-3-030-17502-3_16
https://doi.org/10.1007/978-3-319-41528-4_19
https://doi.org/10.1007/978-3-319-41528-4_19
https://slebok.github.io/proverb/java.html
https://slebok.github.io/proverb/modelchecking.html
https://slebok.github.io/proverb/modelchecking.html
https://slebok.github.io/proverb/pv4.html
https://github.com/martinschaef
https://github.com/martinschaef
https://github.com/pruemmer
https://github.com/pruemmer
https://github.com/ali-shamakhi
https://github.com/ali-shamakhi
https://github.com/hsanchez
https://github.com/hsanchez
https://github.com/lememta
https://github.com/lememta
https://github.com/jayhorn/jayhorn/graphs/contributors
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv2.html
https://slebok.github.io/proverb/pv3.html
https://slebok.github.io/proverb/pv4.html


Extract, model, refine: improved modelling of program verification tools...

Fig. 5 An overview of the different steps that are undertaken each time the data set is enriched

Table 3 An overview of how many tools were identified in the CAV
and TACAS proceedings

Tools Prototypes No tool

CAV 257 (50%) 54 (10%) 95 (22%)

TACAS 94 (18%) 0 (0%) 19 (4%)

Overall 351 (68%) 54 (10%) 114 (22%)

• PV5: 13 — cf. Sect. 5.6
• PV6: 13 — cf. Sect. 5.7
• No PV: 46
• To be categorised: 8

Table 3 gives an overview of how many tools were iden-
tified in the CAV and TACAS proceedings respectively. The
papers that presented unnamed prototypes were counted sep-
arately and excluded from the data set. Papers that did not
discuss any implementation, such as theoretical papers or
case studies, counted towards the “No tool” column. Overall,
78% of the papers that we looked at included some imple-
mentation, 68% of which were identifiable tools and 10%
were prototypes. We suspect the percentages to be consider-
ably lower, hadwe chosen other conferenceswithout a strong
tool focus.

The light snowballing principle that we have mentioned
above (another tool page is added if at least two existing
entries refer to the same tool which is not yet in the data set)
led to adding another 76 tools to the data set.

We consider limitations of our data set and the process of
creating it, at the very end of the paper, in Sect. 6.1.

4.3.1 Data enrichment statistics

400 out of 427 of the markdown files were included in the
data enrichment process. The other files were excluded as
they were READMEs and pages that did not describe tools
but specification formats.

In total, we could automatically retrieve information about
256 of 269 repositories. This information included code con-
tributors, the last commit date and the “About” section shown
on a repository’s page. For the articles, wewere able to enrich
518 of 525 articles successfully. For each article, it retrieves
the title, abstract and authors. Some repositories and arti-
cles could not be enriched as this data was not available
throughGithub’s, Springer’s or Crossref’s API. For example,

some repositories are hosted on organisation-specific GitLab
instances and some articles link to an organisation’s website
instead of a DOI.

In total 1419 code contributors and 1188 authors were
identified. Of these contributors, 1086 people have provided
a name which can be used to identify same-as relationships
with authors. In total, 273 same-as relationships have been
found when looking for exact name matches. 169 tools con-
tain at least one expert who contributed to both the paper and
the code. The actual number is expected to be much higher
as we only considered exact matches and not all code con-
tributor’s have provided a name that can be matched to.

5 Trends in PV-levels

In this section, we identify different subgroups within each
PV-level of the megamodel.

5.1 PV0: potential tools

At the time of writing of this paper, ProVerB had 16
tools on PV0. It is the absolute minority compared to other
categories, which is intentional due to the inherent non-
verifying nature of PV0. As the word cloud, generated from
tool descriptions and visualised above, suggests, it is more
about analysis than proving, andmore about “matching” than
“checking”, and some of these “tools” are mere libraries for
larger packages likeCoq andUppaal. 13 of thePV0 tools pro-
vide facilities toworkwith various kinds of seemingly formal

123

https://slebok.github.io/proverb/pv5.html
https://slebok.github.io/proverb/pv6.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv0.html


S. Lathouwers et al.

artefacts: grammars, regular expressions, automata, decision
diagrams, session types, and floating point numbers. How-
ever, there is simply not enough formal rigour in the way
these tools operate these artefacts, for us to consider them
truly a part of the program verifier’s arsenal. As an example,
consider ANTLR [69]: given a grammar, it generates a parser
for it. However, it does so without the grammar being per-
ceived, modelled and transformed as a mathematical object.
If the user provides ANTLRwith a grammar which is uncon-
nected or ambiguous, then the generated parser will be faulty,
and no warning might be issued.

Two remaining PV0 tools are, in fact, repositories:
Ceramist [42] and Prosa [43] are libraries that store formal
artefacts (definitions and proofs) but by themselves neither
provide arguments about their correctness, nor verify those
(both rely on Coq). The last PV0 tool is Smt-Switch [60],
a collection of abstract classes that, if inherited from and
implemented, can help integrate SMT solvers—again, this
library by itself is definitely related to the PV domain, but
does not help bring any correctness guarantees.

What allPV0 tools have in common is their position on the
verificationdiagramwehave shown inSect. 3: they are claims
without arguments, without a prover and without a verifier.
The claims can be formal, but the surrounding context does
not qualify as PV tool support.

5.2 PV1: essential tools

Out of 98 tools on the PV1 level, 19 can be seen as
frameworks enabling their end users to work with certain
models/abstractions in a formal way. For instance, Frama-
C [24] contains functionality to treat C programs as formal
artefacts and thus can be used to build different program anal-
yses on top of it; BINSEC [31] provides similar functionality
and opportunities to implement binary level code analysis;
there are comparable tools that deal with Büchi automata,
symbolic automata, decision diagrams, temporal logic for-

mulae, etc. 9 more tools could be seen as limited frameworks
that are developed specifically to compare two models in a
formal way. For example, SPAN [13] computes whether two
protocols are indistinguishable, and RABIT [1] checks inclu-
sion of languages generated by two Büchi automata. Another
8 tools can be seen as normalisers that bring a given model
to some well-defined canonical state: Mealy machines and
Büchi automata can be automatically minimised, quantified
Boolean formulae can be simplified and turned into depen-
dency quantified Boolean formulae, etc.

21 different PV1 tools are linters, type checkers and
checkers of other kinds of properties that are fixed and
hardcoded into the tool (we will see checkers of user-
specified properties on PV3). Such properties can include
conformance, semantic preservation, type safety, automata
emptiness, safety of Markov decision processes, thread
safety, etc. Reachability and termination analyses, due to
their internal workings, we count towards another category,
which includes metric calculators and tools that compute a
set of possible states of a model or infer ranking functions,
or compute upper and lower bounds of something — there
are 34 of them in total.

Finally, the remaining 7 tools can execute models, sim-
ulate their behaviour, (partly) visualise them and resolve
them otherwise: Murxla by Niemetz, Preiner, and Barrett
[64] fuzzes SMT solvers, CabPy by Baier et al. [9] solves a
two-player reachability game, Oink by van Dijk [85] solves a
parity game, jcstress by Shipilëv [79] and PROVER by Ryou
et al. [75] execute test cases in a specific order, CLEAR by
Barbon, Leroy, and Salaün [11] and dtControl byAshok et al.
[7] visualise the problematic part of a labelled transition sys-
tem and previously externally synthesised controller code,
respectively.

5.3 PV2: creational tools

There are 84 tools in PV2, their descriptions visualised
as above. The largest identifiable group, with 37 members,

123

https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv3.html
https://slebok.github.io/proverb/pv2.html


Extract, model, refine: improved modelling of program verification tools...

consists of tools providing correct-by-construction artefacts
given a specification: some synthesise a controller from an
LTL formula, others generate a dynamic neural network for a
given grid, some generate tests for a given circuit, while oth-
ers specifically generate classes that attempt to violate given
properties. This group of tools can produce fairly formal arte-
facts that are automatically verifiable, but they do not provide
any verifier means themselves. 8 more tools perform limited
versions of the same process, generating only enough con-
tent to fill in holes in an already partially existing model or
program. For instance, τ -DIGITS by Drews, Albarghouthi,
and D’Antoni [33] fills holes in a given loop-free program
fromaprobabilistic specification of its desired behaviour, and
MOVEC by Chen, Wang, Zhu, Xi, and Yang [25] performs
aspect weaving. Two more tools (DIGITS by Albarghouthi,
D’fAntoni, andDrews [2] and TarTar by ölbl, Leue, andWies
[53]) specifically propose repairs as code fragments meant
to substitute existing code fragments assumed to be faulty.

The second popular group contains 19 tools that encode
or transform the artefact from one format or formalism to
another. This group covers tools for sequentialising parallel
C code (MU-CSeq by Tomasco et al. [82]), or transform-
ing irreversible programs into reversible circuits (ReVerC by
Amy, Roetteler, and Svore [4]). There are several tools on
this level that operate on temporal logic formulae, making a
timed automaton (MightyL by Brihaye, Geeraerts, Ho, and
Monmege [21]) or an Electrum model (Cervino by Peyras,
Bodeveix, Brunel, and Chemouil [70]) or another temporal
logic formula in a different dialect (MLTLconverter by Li,
Vardi, and Rozier [59]) from them.

8 tools can be used to refine specifications: for instance,
by inferring type annotations from an untyped program such
as Typpete by Hassan, Urban, Eilers, and Müller [46], or
generating permission pre- and postconditions for Viper pro-
grams likeSamplebyDohrau, Summers,Urban,Münger, and
Müller [32] does.

Finally, 10 tools generate configurations or settings for
other tools, such as PeSCo by Richter and Wehrheim [73]
whichgenerates the best fitting configuration forCPAchecker
by Beyer and Keremoglu [17] that fits previous experiences;
or SATzilla byXu,Hutter,Hoos, andLeyton-Brown [92] that
decides which solver to call per instance based on predictors.

5.4 PV3: property checking tools

PV3 currently has 74 tools. Within PV3 we can clearly
identify three main subgroups: property checkers, assertion
checkers and program repair tools.

The first group consists of 40 tools that check properties
for some form of model such as automata or network mod-
els. For instance, STAMINA by Neupane, Myers, Madsen,
Zheng, and Zhang [63] can be used to check properties of
infinite-state continuous-time Markov chains.

The second group consists of 28 tools that check assertions
for concrete artefacts. For example, SecC by Ernst and Mur-
ray [34] can check information flow properties, expressed as
assertions, for C programs.

Four tools: Forester by Holík et al. [48], SymDIVINE
by Mrázek, Bauch, Lauko, and Barnat [62], Trainify by Jin,
Tian, Zhi, Wen, and Zhang [50] and VeryMax by Borralleras
et al. [20] — fall in between these two groups. The first
two of these work on LTL formulae as properties, but apply
them on real C/C++ code (SymDIVINE allows both “nor-
mal” assertions and LTL formulae). Trainify checks ACTL
properties forDeepReinforcement Learning systems defined
in Python. VeryMax works both on programs (C/C++) and
models (transition systems).

123

https://slebok.github.io/proverb/pv3.html


S. Lathouwers et al.

Finally, there is also a small but growing group of tools
that focuses on program repair: AllRepair by Rothenberg and
Grumberg [74] and NNRepair by Usman, Gopinath, Sun,
Noller, and Păsăreanu [84]. These tools both identify faults
in the program, like other tools in PV3, and they also propose
a way to fix it.

5.5 PV4: specification checking tools

Currently, PV4 is the largest category with 101 tools, the
descriptions of all of them also used for a word cloud above.
The largest group (51) of tools within PV4 are the solvers.
These tools produce a satisfiability result for SAT (satisfiabil-
ity), SMT (satisfiability modulo theories), QBF (quantified
Boolean formulae) or CHC (constrained Horn clauses) prob-
lems. Because these tools verify a specific property (namely,
satisfiability), one may have expected to find them in PV1.
However, these tools typically generate interpretations for
the given problem to show that it is (un)satisfiable. So, inter-
nally each of these tools consists of two essential parts: the
property generator which generates the interpretation and
the verifier which checks whether this interpretation makes
the formula satisfiable. This group also contains the tool that
is referred to the most often in our data set — namely, Z3 by
Moura and Bjørner [30]. It belongs to SMT solvers together
with 17 other tools; there are also 22 SAT solvers; 3 CHC
solvers; and 6 solvers of other kinds.

Many PV tools from other levels encode their problems
into satisfiability problems and then use one of the tools in
this group as a back end.

PV4 also includes 25 tools that generate properties or
check built-in specifications typically depending on the
domain that the tool targets. Some examples of built-in spec-
ifications that are checked, include memory safety, data-race
freedom, termination and absence of runtime errors.Many of
these tools also provide support to check user-written prop-
erties. For instance, Gobra by Wolf et al. [90] can check

user-written assertions for Go programs as well as memory
safety, data-race freedom and crash safety.

Finally, there is a small group of what we can call lan-
guage workbenches [39], and we strongly suspect that there
are more of this kind that escaped our selection only because
nobody published about them directly at CAV and TACAS
recently. A language workbench was envisioned in 2005 as
a set of tools aiding the language engineer to design, imple-
ment and integrate a collection of domain-specific languages
into oneunified solution. Someof the popular languagework-
benches inmodel-driven software engineering includeXtext,
MPS, MetaEdit+, Rascal and Spoofax. The two language
workbenches that we have found mentioned for the domain
of programverification, wereDLCbyEvrard [35], which can
automatically generate distributed implementation of con-
current systemsmodelled in the LNT language, which can be
verified using the CADP toolbox; and PrDK byArbab [51], a
development kit for programming communication protocols.

5.6 PV5: fully controlled verification tools

Continuing the same trend, on PV5 we see a uniform
group of 13 verification workbenches. These are tools that
allow users to write their own specifications and combine
these together with desired properties into a formal math-
ematical representation. These formal representations can
then be compared with representations of programs or their
properties for the verification. Users can have very fine-
grained influence on the results of these tools because they
are allowed to write their own specification. For example,
Attestor by Arndt, Jansen, Katoen, Matheja, and Noll [6]
allows the user to specify the initial heap configuration and
the behaviour of the garbage collector that should be taken
into account when verifying a property for a Java program.
Similarly, UPPAAL by Bengtsson, Larsen, Larsson, Petters-
son, and Yi [14] is a workbench for automatic verification of

123

https://slebok.github.io/proverb/pv3.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv5.html
https://slebok.github.io/proverb/pv5.html


Extract, model, refine: improved modelling of program verification tools...

safety and bounded liveness properties of real-time systems
modelled as networks of timed automata.

5.7 PV6: proving tools

All 13 tools in PV6 are proof workbenches. Many of the
tools in previous categories give a yes/no answer to indicate
whether a property holds, and in any case allowing at most
some influence on the property generating and handling pro-
cess, but not on the final proof. PV6 tools, however, will help
the user to construct and infer the correctness of a proof that
showswhy a property is true or false. Somewell-known tools
in PV6 are Coq by Bertot and Castéran [15], Isabelle/HOL
by Nipkow, Wenzel, and Paulson [65], Lean by L. de Moura
and Ullrich [29] and Vampire by Kovács and Voronkov [54].
Their comparison is a highly nontrivial task even for profes-
sional mathematicians [87].

6 Conclusion & roadmap

Our contribution of this paper is two-sided. On one side, we
have analysed a fairly complex domain and turned one of
the commonly used visualisations of its core processes into a
full fledgedmegamodel that helped us to split the domain into
much more intelligible smaller categories. On the other side,
we have processed hundreds of academic papers published
across several recent years, classified them according to the
proposed megamodel and generated a user-friendly website
allowing software engineers to compare and assess tools in
a bit more secure, complete and safe way than before.

The megamodel that we have presented, identifies the dif-
ferent type of program verification tools that we found exist-
ing or that can possibly be made to exist. This megamodel is
based on the classic division of roles in a correctness proof as
introducedbyGoldwasser et al. [41] that is currently accepted
by the computational community. Our megamodel divides

the different types of tools into seven categories: PV0, PV1,
PV2,PV3,PV4,PV5 and PV6. These categories are increas-
ingly more demanding and increasingly more powerful: it is
possible to gain some benefit from a PV0 or PV1 tool within
the first day of being introduced to it, but much further refine-
ment and improvement might not be possible; on the other
side of the spectrum,PV6 tools can do almost everything, and
require a relevant PhD degree to operate. Thus, there is no
discussion on “what is the best PV-level”, just a classification
that helps to match a tool to customer needs.

To bring the megamodel to life, we have designed a meta-
model to hold semi-structured information about a PV tool,
including its PV-level, name, input/output, etc, and instan-
tiated it for all tools that we have found being mentioned
and used in the last five years of two top conferences in the
field: CAV and TACAS. Our data set at the time of writing
consists of 450+ tools, formats and libraries. By setting up
a megamodel as well as a data set, we hope to provide both
a theoretical as well as a practical starting point to get into
the world of PV tools and methods. A good starting point
for browsing and exploring ProVerB would be its hypertext
frontend: http://slebok.github.io/proverb/ which also con-
tains links to other sites (GitHub, DOIs, etc) for each tool.

6.1 Threats to validity

Conclusion validity. All the PV-classifications that we have
performed, come from our personal interpretations of the
contents of a fairly large body of fairly complex academic
papers. Thus, it is possible that some tools have beenmisclas-
sified as belonging to one level while they actually belong
to another level. To prevent misclassifications, the authors
were actively double checking each other’s verdicts and had
extensive discussions about arguable conclusions. Eventu-
ally we plan to reach out to authors of all tools included
in ProVerB individually, with a detailed explanation of the
seven PV-levels and a request to review our summaries and
refine them, possibly leading to reclassifications. If such a
community effort causes a noticeable resonance, it would be
possible to eliminate this threat entirely.

Internal validity. Since our project is more of an obser-
vational and classificational nature, initially we did not
attempt to establish any causal relationships. Hence, inter-
nal validity was not among our major concerns. However,
since the moment we started enhancing the data set with
other sources of linked data such as GitHub and Springer-
Link API, it becomes increasingly more relevant to correctly
establish contributor identity equivalence across multiple
platforms with varying usernames and non-strictly match-
ing names [38].

Construct validity. As we have explained in Sect. 3, our
megamodel was designed based on the classic division of
roles in a correctness establishing setup as described by

123

https://slebok.github.io/proverb/pv6.html
https://slebok.github.io/proverb/pv6.html
https://slebok.github.io/proverb/pv6.html
https://slebok.github.io/proverb/pv6.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv2.html
https://slebok.github.io/proverb/pv3.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv5.html
https://slebok.github.io/proverb/pv6.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv6.html
http://slebok.github.io/proverb/


S. Lathouwers et al.

Goldwasser et al. [41], in the modern reinterpretation by
Wigderson [88]. By reusing a model that originates from the
right domain, we hope to have found a mature foundation
that will allow us to classify any possible tool in the future
by matching its components and concepts to the claim, the
prover, the arguments and the verifier. Only if we encounter
future tools that do not fit into this model, will we have to
redesign the megamodel again. However, in the works of
Wigderson [88], generalising the notion of a proof frombeing
a unidirectional communication from the prover towards the
verifier, to a bidirectional series of communications, handling
interactivity, errors, randomness and other natural aspects of
computation, has opened a lot of doors and led to the dis-
covery of a number of complexity classes with a distinctly
higher expressive power. For instance, relying on more than
two verifiers at the same time is not uncommon in PV, but
this is mostly done for practical considerations such as try-
ing all available ones to watch only the fastest complete its
proof. It is neither considered nor suspected thatmulti-prover
or multi-oracle PV tools can lead us to a broader computa-
tional class. Since this has not been researched or established
before, we also do not consider such multi-tier setups as one
of the PV-levels explicitly.

External validity. We have gathered data from publica-
tions atCAVandTACAS,which seemed like a good choice of
information since both favour papers about program verifica-
tion tools to non-tool papers and non-PV content. However,
there are more venues that target the program verification
field (POPL, PLDI, FASE, LICS, etc). It is unknown at
the moment what biases we have created in the data set
by limiting ourselves to only CAV and TACAS and related
papers, techniques and tools. While limited, the number of
tools (380+) included is significant, and they seem reason-
ably spread out among the different PV-levels. We see that
the most popular tools are included, partly because we also
include tools if they are referred to by at least two other tools.
So, while perhaps limited on the grand scheme of things, we
think that this is a good starting point for the data set.

6.2 Roadmap for the future

With the megamodel designed, and the initial data set col-
lected, our main focus for the future is the usage of our work.
The PV-levels naturally cover the entire spectrumof all possi-
ble tools from informal/semiformal to self-validating, so the
usual future work claim of adding more levels to the meg-
amodel, cannot possibly apply here. Thus, below we discuss
several concrete scenarios to show how it can be used and
extended to cater for those uses.

Scenario 1: the first scenario, which closely resembles our
original goal of collecting and classifying available program
verification tools for ourselves, is to help users find suitable
tools. Even now potential users of any of the tools listed at

the ProVerB website, can explore the data set in different
ways, such as systematically covering some PV-level after
determining which one is needed, or browsing through tools
listed under one of the tags (e.g. “LLVM” or “Smart con-
tract”). To improve the usability in this scenario, we believe
it would be useful to develop a decision tree to help people
find the right tool. Such a decision tree can take the client’s
requirements into account such as the domain to which it is
applied and the problems it should solve.

One of the aspects of seeking the right tools for the job
that we have not considered before, is tool popularity among
other potential users — for some definition of it. However,
there are many ways to assess popularity or utilisation of
program verification tools, such as:

• Presence: in our study we have declared that even one
use or mention of a tool justifies its addition to ProVerB
— however, more frequent appearances at conferences
and workshops, as well as prominence in tutorials and
keynotes, may indicate higher popularity. In some sub-
domains of program verification contests are being held
regularly, and if a tool appears there often, it means it is
highly competitive among cutting edge alternatives.

• Citations: the number of papers referred to either the
main paper introducing the tool in question, or collec-
tively to all papers written about the tool. This can be
possibly calibrated by tracking the age of citations as
well, to avoid the bias towards older tools.

• Usage: many platforms allow tool makers to track the
number of downloads, installations or active users. Tools
mature enough to be used in the industry can also often
be tracked with respect to their adoption, either directly
through companies applying them to solve their prob-
lems, or indirectly by counting published case studies
and success stories.

• Community: engagement can be a good proxy for a tool
popularity, hence the reliance inmany studies on counters
likeGitHub stars and forks, or the number of contributors,
issue resolutions or commits.

• Social Media: presence on social media platforms
goes beyond simple vanity and can also mean that
blogs/podcasts, discussion fora/groups, Discord/Slack
servers, Reddit/StackOverflow sections, etc, are readily
available to support newcomers learning to use this tool.

• Surveys: tool popularity canbemeasureddirectly by ask-
ing a significant number of researchers and practitioners
to express their preferences by filling in questionnaires.
This is a labour intensive initiative but yielding quali-
tative insights into actual tool popularity and perceived
effectiveness.

There are also composite methods of expression popular-
ity and adoption of a piece of software, such as Software

123



Extract, model, refine: improved modelling of program verification tools...

Universe Graphs by Kula, De Roover, German, Ishio, and
Inoue [56]. In any case, we note that popularity has been
found to not correlate that much with other aspects of soft-
ware quality such as defect density [76] or security [80].
Other studies have even found an inverse correlation, such as
Alsmadi and Alazzam [3] who observed that projects with
higher number of downloads also tend to have higher cyclo-
matic complexity.

Scenario 2: the second scenario is similar to the first one,
but the selection is done in the presence of a knowledge-
able consultant. Such an expert has sufficient knowledge
about the field of program verification and thus can deter-
mine what type of tool suits the client’s problem. Exploring
the domain together with the client could potentially lead not
only to reaching its intended goal of finding and selecting the
right tool, but also to insights in requirements elicitation. It is
well-known that exploring the solution space often leads to
discoveries on the problem definition side. For this scenario,
the most useful improvement would be to subdivide the PV-
levels further. At the moment the levels are neither uniform
nor equidimensional: some are naturally larger, others con-
tain substantially sized identifiable subcategories.

Different aspects can be of more importance in this sce-
nario, or at least can gain more weight due to the presence
of a verification expert acting as a requirements elicitor, such
as:

• Performance: efficiency of the candidate tool can be
assessed by either their known position in the last rel-
evant competition, or by observing how consistently it
passes appropriate applicable benchmarks.

• Flexibility: adapting the tool to the needs of the user
might involve scalability issues, assumptions about input
data, customisability and extensibility, as well as some
other similar details that can subtly influence the choice.

• Integrationwith widely used formats, platforms, frame-
works or toolchains can enhance the tool’s chances of
being a part of the ultimate solution.

• Learnability: some tools are known to be more user-
friendly than others, or having a particularly steep or
gentle learning curve. This can be supported by avail-
ability and reliability of documentation, by accessible
tutorials and books, as well as by other means of skill
transfer.

• Community can play a role just like in the case of pop-
ularity above. Ongoing support and continuing improve-
ment weighs just as much here as having an active group
of core developers and helpful and inclusive learning
community.

• Risks, if known, can be weighed realistically and mit-
igated by planning for contingencies. This applies to
future plans for dealing with the tool becoming obsolete,

relying on older dependencies, keeping vulnerabilities
unresolved, etc.

Scenario 3: another usage scenario focuses on using the
available data, and a similar format, to improve artefact eval-
uations or paper reviewing process. In artefact evaluations,
reviewers can typically indicate what artefacts they would be
interested in reviewing based on a title and/or abstract [55].
However, these do not always provide a clear description
of the tool’s capabilities due to which a reviewer end up
having to review a tool outside of their field of expertise.
Using a format as in our data set would provide a more struc-
tured approach to describe the tool and can be helpful to
correctly identify what tools’ capabilities are to prevent such
situations. Moreover, if this format can be incorporated into
artefact evaluations as a required part of the submission, this
provides a distributed approach that allows us to keep the
data more easily up to date.

Other key aspects that may prove useful in the context of
this scenario, are:

• Evaluation Criteria can be standardised and applied
consistently across different tools, improving the rigour
and effectiveness of the entire artefact evaluation pro-
cess. It might even be possible to devise a standardised
methodology to evaluate tools according to the PV-level
they find themselves on.

• Submission Guidelines are becoming clearer each year,
but perhaps clear positioning of a submitted tool on a
PV-level and clearly stating its input and output formats,
as well as filling out other fields that we ended up using
within ProVerB, could align tool authors’ and evaluators’
expectations better.

• Tool-Agnostic Benchmarks can be based on data sets
that are specific to a PV-level or to a format or to a com-
bination of a tags/concepts. This will not only improve
replicability, but also encourage and significantly sim-
plify cross-tool comparable studies.

• AutomationofEvaluation is the ultimate goal of artefact
assessment. While there is perhaps still place for human
evaluation as a part of it, just like there is a place for it for
peer reviewing papers, many steps such as conformance
to a declared format or the ability to produce the same
outputs as reported in the accompanying paper, can and
should be automated to avoid manual labour and human
bias.

Scenario 4: for all three of the scenarios described above,
it can be useful to further extend our data set. This can focus
on either adding new entries to the current data set, or to
extend the information that is available for the current tools.
At the moment, in order to classify a new tool that is absent
from the data set, into an appropriate PV-level, one would

123



S. Lathouwers et al.

basically need to read this paper and combine their under-
standing of what the tool does with their understanding of the
what each PV-level stands for. It will be more appropriate to
design a specific decision tree with clear questions, answers
to which will unequivocally lead to one level or the other. In
a way, this is an “implementation detail” since it might not
require deeper understanding of the megamodel, but it is also
known that explicitly renarrating a megamodel significantly
increases its appreciation among domain experts and other
users [93].

Pragmatically, contributing to the ProVerB repository is
straightforward: the data set is a GitHub repo which can be
forked and worked on, with a pull request asking to merge it
back to the original. In order to add a new tool, an external
contributor can create a new Markdown document from the
template—manually orwith one of the available scripts (e.g.
parsing a proceedings volume and suggesting a number of
tools found there heuristically). All the refinement features
described above, also remain accessible: for instance, it is
sufficient to add DOIs of papers and URIs of source code in
order for our GitHub workflow to pick them up and replace
bare linkswith paper titles and to add last activity information
from accessing the APIs.

Additionally, it is interesting to investigate the possibil-
ity of combining our ontology with others, including, e.g.
the runtime verification tool taxonomy by Falcone et al. [36]
and the repository structure proposed by Schlick et al. [77].
When extending the ontology, it is important to consider how
to incorporate grey literature. So far, we have only included
tools that were introduced in the academic literature. How-
ever, David et al. [27] have shown that, for modelling tools
that support blended modelling, grey literature had a higher
ratio of tools introduced per literature source. In the grey
literature, they identified 68 tools in 1494 sources whereas,
in the academic literature, they identified 68 tools in 4975
entries. It is unclear whether such a ratio would be simi-
lar in the field of program verification, a field known for its
theoretical difficulties. Nonetheless, in all likelihood, we are
currently missing some tools that have only been discussed
in grey literature.

Acknowledgements This project was partly funded by the Neder-
landse Organisatie voorWetenschappelijk Onderzoek through the VICI
639.023.710 Mercedes project.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abdulla, P.A., Chen, Y.-F., Clemente, L., Holík, L., Hong, C.-D.,
Mayr, R., Vojnar, T.: Simulation subsumption in Ramsey-based
Büchi automata universality and inclusion testing. In: Touili, T.,
Cook, B., Jackson, P. (Eds.), In: Proceedings of the 22nd inter-
national conference on computer aided verification (CAV) (pp.
132–147). Springer (2010)

2. Albarghouthi, A., D’Antoni, L., Drews, S.: Repairing decision-
making programs under uncertainty. In: Majumdar, R., Kunčak,
V. (Eds.), In: Proceedings of the 29th international conference on
computer aided verification (CAV) (pp. 181–200). Springer (2017)

3. Alsmadi, I., Alazzam, I.: Software attributes that impact popularity.
In: Proceedings of the eighth international conference on informa-
tion technology (ICIT) (pp. 205–208) (2017)

4. Amy, M., Roetteler, M., Svore, K.M.: Verified compilation of
space-efficient reversible circuits.Majumdar,R.,Kunčak,V. (Eds.),
In: Proceedings of the 28th international conference on computer
aided verification (CAV) (pp. 3–21). Springer (2017)

5. Andova, S., van den Brand, M., Engelen, L.J.P., Verhoeff, T.: MDE
basics with a DSL focus. In: Advanced lectures of the 12th inter-
national school on formal methods for the design of computer,
communication and software systems: formal methods for model-
driven engineering (Vol. 7320, pp. 21–57). Springer (2012)

6. Arndt, H., Jansen, C., Katoen, J.-P., Matheja, C., Noll, T.: Let this
graph be your witness! In: Chockler, H., Weissenbacher, G. (Eds.),
In: Proceedings of the 30th international conference on computer
aided verification (CAV) (pp. 3–11). Springer (2018)

7. Ashok, P., Jackermeier, M., Křetínský, J., Weinhuber, C.,
Weininger, M., Yadav, M.: dtControl 2.0: explainable strategy rep-
resentation via decision tree learning steered by experts. In: Groote,
J.F., Larsen, K.G. (eds.) In: International conference on tools and
algorithms for the construction and analysis of systems, pp. 326–
345. Springer, Cham (2021)

8. Aydemir, B.E., Bohannon, A., Fairbairn, M., Foster, J.N., Pierce,
B.C., Sewell, P., Zdancewic, S.: Mechanized metatheory for the
masses: the PoplMark challenge. In: Hurd, J., Melham, T.F. (Eds.),
In: Proceedings of the 18th international conference on theorem
proving in higher order logics (TPHOLs) (Vol. 3603, pp. 50–65).
Springer (2005)

9. Baier, C., Coenen, N., Finkbeiner, B., Funke, F., Jantsch, S., Siber,
J.: Causality-based game solving. In: Silva, A., Leino, K.R.M.
(eds.) In: International conference on computer aided verification,
pp. 894–917. Springer, Cham (2021)

10. Baldassarre,M.T., Ernst, N., Hermann, B.,Menzies, T., Yedida, R.:
(Re) use of research results (is rampant). Commun. ACM 66(2),
75–81 (2023). https://doi.org/10.1145/3554976

11. Barbon, G., Leroy, V., Salaün, G.: Debugging of behavioural
models with CLEAR. In: Vojnar, T., Zhang, L. (eds.) Tools and
algorithms for the construction and analysis of systems: 25th Inter-
national Conference, TACAS 2019 pp. 386–392. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17462-0_26

12. Barringer, H., Havelund, K.: TraceContract: a Scala DSL for trace
analysis. In: Proceedings of the 17th international symposium of
formal methods (Vol. 6664, pp. 57–72). Springer (2011)

13. Bauer, M.S., Chadha, R., Prasad Sistla, A.R., Viswanathan, M.:
Model checking indistinguishability of randomized security pro-
tocols. In: Chockler, H., Weissenbacher, G. (eds.) In: International
conference on computer aided verification (CAV), pp. 117–135.
Springer, Cham (2018)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3554976
https://doi.org/10.1007/978-3-030-17462-0_26


Extract, model, refine: improved modelling of program verification tools...

14. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.:
UPPAAL: a tool suite for automatic verification of real-time sys-
tems. In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds.) Hybrid
systems, pp. 232–243. Springer, Cham (1996)

15. Bertot, Y., Castéran, P.: Interactive theorem proving and program
development: Coq’art: the calculus of inductive constructions.
Springer, London (2004)

16. Beyer, D.: Progress on software verification: Sv-comp 2022. In:
Fisman, D., Rosu, G. (eds.) Tools and algorithms for the construc-
tion and analysis of systems, pp. 375–402. Springer, Cham (2022)

17. Beyer, D., Keremoglu, M.E.: Cpachecker: a tool for configurable
software verification. In: Gopalakrishnan, G., Qadeer, S. (eds.)
Computer aided verification, pp. 184–190. Springer, Cham (2011)

18. Bicarregui, J., Hoare, C.A.R., Woodcock, J.C.P.: The verified soft-
ware repository: a step towards the verifying compiler. FormalAsp.
Comput. 18(2), 143–151 (2006). https://doi.org/10.1007/s00165-
005-0079-4

19. Bodeveix, J., Filali, M., Lawall, J., Muller, G.: Formal methods
meet domain specific languages. In: Romijn, J., Smith, G., van de
Pol, J. (Eds.), In: Proceedings of the fifth international conference
on integrated formal methods (IFM) (Vol. 3771, pp. 187–206).
Springer (2005)

20. Borralleras, C., Brockschmidt, M., Larraz, D., Oliveras, A.,
Rodríguez-Carbonell, E., Rubio, A.: Proving termination through
conditional termination. In: Legay, A., Margaria, T. (eds.) Tools
and algorithms for the construction and analysis of systems, pp.
99–117. Springer, Cham (2017)

21. Brihaye, T., Geeraerts, G., Ho, H.M., Monmege, B.: Mightyl:
a compositional translation from MITL to timed automata. In:
Majumdar, R., Kunčak, V. (eds.) Computer aided verification, pp.
421–440. Springer, Cham (2017)

22. Broadfoot, G.H., Broadfoot, P.J.: Academia and industry meet:
some experiences of formal methods in practice. Proceedings of
the 10th asia-pacific software engineering conference (APSEC)
(p.49). IEEE Computer Society (2003)

23. Bucchiarone, A., Ciccozzi, F., Lambers, L., Pierantonio, A., Tichy,
M., Tisi, M., Zaytsev, V.: What is the future of modelling? IEEE
Softw. Insights (IEEE Softw.) 38, 119–127 (2021). https://doi.org/
10.1109/MS.2020.3041522

24. Canet, G., Cuoq, P., Monate, B.: A value analysis for C programs.
In: Ninth IEEE international working conference on source code
analysis andmanipulation, SCAM2009, 2009 (pp. 123–124). IEEE
Computer Society (2009)

25. Chen, Z., Wang, Z., Zhu, Y., Xi, H., Yang, Z.: Parametric runtime
verification of C programs. In: Chechik, M., Raskin, J.F. (eds.)
Tools and algorithms for the construction and analysis of systems,
pp. 299–315. Springer, Cham (2016)

26. Corrêa, E.A., Jr., Silva, F.N., da F. Costa, L., Amancio, D.R.: Pat-
terns of authors contribution in scientific manuscripts. J. Inform.
11(2), 498–510 (2017). https://doi.org/10.1016/j.joi.2017.03.003

27. David, I., Latifaj, M., Pietron, J., Zhang, W., Ciccozzi, F., Mala-
volta, I., Hebig, R.: Blended modeling in commercial and open-
source model-driven software engineering tools: a systematic
study. Softw. Syst. Model. 22(1), 415–447 (2023). https://doi.org/
10.1007/s10270-022-01010-3

28. Davis, J.A., Clark, M.A., Cofer, D.D., Fifarek, A., Hinchman, J.,
Hoffman, J.A.,Wagner, L.G.: Study on the barriers to the industrial
adoption of formalmethods. In: Pecheur, C., Dierkes,M. (Eds.), In:
Proceedings of the 18th international workshop on formal methods
for industrial critical systems (FMICS) (Vol. 8187, pp. 63–77).
Springer (2013)

29. de Moura, L., Ullrich, S.: The lean 4 theorem prover and program-
ming language. In: Platzer, A., Sutcliffe, A. (Eds.), In: Proceedings
of the 28th International conference on automated deduction
(CADE) (pp. 625–635). Springer (2021)

30. de Moura, L.M., Bjørner, N.S.: Z3: An efficient SMT solver. In:
Ramakrishnan, C.R., Rehof, J. (Eds.), In: Proceedings of the 14th
international conference on tools and algorithms for the construc-
tion and analysis of systems (tacas) (Vol. 4963, pp. 337–340).
Springer (2008)

31. Djoudi, A., Bardin, S.: BINSEC: binary code analysis with low-
level regions. In: Baier, C., Tinelli, C. (Eds.), In: Proceedings of
the 21st international conference on tools and algorithms for the
construction and analysis of systems (TACAS) (Vol. 9035, pp. 212–
217). Springer (2015)

32. Dohrau, J., Summers, A.J., Urban, C., Münger, S., Müller, P.:
Permission inference for array programs. In: Chockler, H., Weis-
senbacher, G. (eds) In: Computer aided verification. CAV 2018.
(pp. 55–74). Springer (2018)

33. Drews, S., Albarghouthi, A., D’Antoni, L.: Efficient synthesis
with probabilistic constraints. In: Dillig, I., Tasiran, S. (Eds.), Pro-
ceedings of the 30th international conference on computer aided
verification (CAV) (pp. 278–296). Springer (2019)

34. Ernst, G., Murray, T.: SecCSL: Security concurrent separation
logic. In: Dillig, I., Tasiran, S. (Eds.), In: Computer aided veri-
fication: 31st international conference, CAV 2019 (pp. 208–230).
Springer (2019)

35. Evrard, H.: Dlc: Compiling a concurrent system formal specifica-
tion to a distributed implementation. In: Chechik, M., Raskin JF
(Eds.), In: Tools and algorithms for the construction and analy-
sis of systems: 22nd international conference, TACAS 2016 (pp.
553–559). Springer (2016)

36. Falcone, Y., Krstic, S., Reger, G., Traytel, D.: A taxonomy for
classifying runtime verification tools. Int. J. Softw. Tools Technol.
Transf. 23(2), 255–284 (2021). https://doi.org/10.1007/s10009-
021-00609-z

37. Ferrari, A., Mazzanti, F., Basile, D., Beek, M.H.t., Fantechi, A.:
Comparing formal tools for system design: a judgment study.
In: Proceedings of the ACM/IEEE 42nd international conference
on software engineering (pp. 62–74). Association for Computing
Machinery (2020)

38. Foley,M.J., Kochalko, D.L.: Open researcher and contributor iden-
tifier, a contemporary Stanley. (2012) https://docs.lib.purdue.edu/
cgi/viewcontent.cgi?article=1133&context=charleston

39. Fowler, M.: Language workbenches: the killer-app for domain
specific languages? MartinFowler.com. https://martinfowler.com/
articles/languageWorkbench.html

40. Frey, G., Litz, L.: Formal methods in PLC programming. In:
Proceedings of the international conference on systems, man &
cybernetics: “Cybernetics evolving to systems, humans, organi-
zations, and their complex interactions” (pp. 2431–2436). IEEE
(2000)

41. Goldwasser, S.,Micali, S., Rackoff, C.: The knowledge complexity
of interactive proof-systems. In: Proceedings of the seventeenth
annual ACM symposium on theory of computing (SToC) (p. 291–
304). Association for Computing Machinery (1985)

42. Gopinathan, K., Sergey, I.: Certifying certainty and uncertainty in
approximate membership query structures. In: Lahiri, S.K., Wang,
C. (Eds.), In: Computer aided verification: 32nd international con-
ference, CAV 2020 (CAV) (pp. 279–303). Springer (2020)

43. Guo, X., Lesourd, M., Liu, M., Rieg, L., Shao, Z.: Integrating for-
mal schedulability analysis into a verified OS kernel. In: Dillig, I.,
Tasiran, S. (Eds.), In: Computer aided verification: 31st interna-
tional conference, CAV 2019 (pp. 496–514). Springer (2019)

44. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.:
The quantitative verification benchmark set. In: Vojnar, T., Zhang,
L. (Eds.), In: Proceedings of the 25th international conference on
tools and algorithms for the construction and analysis of systems
(TACAS) (Vol. 11427, pp. 344–350). Springer (2019)

123

https://doi.org/10.1007/s00165-005-0079-4
https://doi.org/10.1007/s00165-005-0079-4
https://doi.org/10.1109/MS.2020.3041522
https://doi.org/10.1109/MS.2020.3041522
https://doi.org/10.1016/j.joi.2017.03.003
https://doi.org/10.1007/s10270-022-01010-3
https://doi.org/10.1007/s10270-022-01010-3
https://doi.org/10.1007/s10009-021-00609-z
https://doi.org/10.1007/s10009-021-00609-z
https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1133&context=charleston
https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1133&context=charleston
https://martinfowler.com/articles/languageWorkbench.html
https://martinfowler.com/articles/languageWorkbench.html


S. Lathouwers et al.

45. Harz, D., Knottenbelt, W.J.: Towards safer smart contracts: a
survey of languages and verification methods. CoRR, (2018)
arxiv:1809.09805

46. Hassan, M., Urban, C., Eilers, M., Müller, P.: Maxsmt-based type
inference for Python 3. In: Chockler, H., Weissenbacher, G. (Eds.),
In: Computer aided verification: 30th international conference,
CAV 2018, (pp. 12–19). Springer (2018)

47. Hermann, B., Winter, S., Siegmund, J.: Community expectations
for research artifacts and evaluation processes. In: Proceedings
of the 28th ACM joint meeting on European software engineer-
ing conference and symposium on the foundations of software
engineering (p. 469–480). New York, NY, USA: Association for
Computing Machinery (2020)

48. Holík, L., Hruška, M., Lengál, O., Rogalewicz, A., Šimáček, J.,
Vojnar, T.: Forester: from heap shapes to automata predicates. In:
Legay, A., Margaria, T. (Eds.), In: Proceedings of tools and algo-
rithms for the construction and analysis of systems (pp. 365–369).
Springer (2017)

49. Hutchinson, J.E., Whittle, J., Rouncefield, M.: Model-driven engi-
neering practices in industry: social, organizational andmanagerial
factors that lead to success or failures. Sci. Comput. Progr. 89, 144–
161 (2014). https://doi.org/10.1016/j.scico.2013.03.017

50. Jin, P., Tian, J., Zhi, D., Wen, X., Zhang, M.: Trainify: a CEGAR-
driven training and verification framework for safe deep reinforce-
ment learning. In: Shoham, S., Vizel, Y. (Eds.), In: International
conference on computer aided verification (pp. 193–218). Cham:
Springer (2022). https://doi.org/10.1007/978-3-031-13185-1_10

51. Jongmans, S.-S.T.Q., Arbab, F.: Prdk: protocol programming with
automata. In: Chechik, M., Raskin, J.F. (Eds.), In: Tools and
algorithms for the construction and analysis of systems: 22nd inter-
national conference, TACAS 2016 (pp. 547–552). Springer (2016)

52. Klösch, R., Eixelsberger, W.: Challenges and experiences in man-
agingmajor software evolution endeavours such as euro conversion
or Y2000 compliance. In: Proceedings of the 15th international
conference on software maintenance (ICSM) (pp. 161–166). IEEE
Computer Society (1999)

53. Kölbl, M., Leue, S., Wies, T.: Tartar: a timed automata repair tool.
In: Lahiri, S.K., Wang, C. (Eds.), In: Computer aided verification:
32nd international conference, CAV 2020 (pp. 529–540). Springer
(2020)

54. Kovács, L., & Voronkov, A.: First-order theorem proving and
Vampire. In: Sharygina, N., Veith, H. (Eds.), In: International con-
ference on computer aided verification (pp. 1–35). Springer (2013)

55. Krishnamurthi, S.: Artifact evaluation for software conferences.
ACM SIGSOFT Softw. Eng. Notes 38(3), 7–10 (2013)

56. Kula, R.G., De Roover, C., German, D.M., Ishio, T., Inoue, K.: A
generalized model for visualizing library popularity, adoption, and
diffusion within a software ecosystem. In: Proceedings of the 25th
IEEE international conference on software analysis, evolution and
reengineering (SANER) (pp. 288–299) (2018)

57. Lamport, L.: The temporal logic of actions. ACM Trans. Progr.
Lang. Syst. (ToPLaS) 16(3), 872–923 (1994). https://doi.org/10.
1145/177492.177726

58. Lathouwers, S., Zaytsev, V.: Modelling program verification tools
for software engineers. In: Proceedings of the 25th international
conference on model driven engineering languages and systems
(p.98-108). New York, NY, USA: Association for Computing
Machinery (2022) https://doi.org/10.1145/3550355.3552426

59. Li, J., Vardi,M.Y., Rozier,K.Y.: Satisfiability checking formission-
time LTL. In: Dillig, I., Tasiran, S. (Eds.), In: Computer aided
verification: 31st international conference, CAV 2019 (pp. 3–22).
Springer (2019)

60. Mann, M., Wilson, A., Zohar, Y., Stuntz, L., Irfan, A., Brown, K.,
Barrett, C.W.: Smt-switch: a solver-agnostic C++ API for SMT
solving. In: Li, C., Manyà, F. (Eds.), In: International conference

on theory and applications of satisfiability testing (Vol. 12831, pp.
377–386). Springer (2021)

61. Meeus, W., Beeck, K.V., Goedemé, T., Meel, J., Stroobandt,
D.: An overview of today’s high-level synthesis tools. Des.
Autom. Embed. Syst. 16(3), 31–51 (2012). https://doi.org/10.
1007/s10617-012-9096-8

62. Mrázek, J., Bauch, P., Lauko, H., Barnat, J.: Symdivine: tool
for control-explicit data-symbolic state space exploration. In:
Bošnački, D., Wijs, A. (Eds.), In: Model Checking Software:
23rd international symposium, SPIN 2016 (pp. 208–213). Springer
(2016)

63. Neupane, T., Myers, C.J., Madsen, C., Zheng, H., Zhang, Z.:
Stamina: stochastic approximate model-checker for infinite-state
analysis. In: Dillig, I., Tasiran, S. (Eds.), In: Computer aided veri-
fication: 31st international conference, CAV 2019 (pp. 540–549).
Springer (2019)

64. Niemetz, A., Preiner,M., Barrett, C.:Murxla: amodular and highly
extensible API fuzzer for SMT solvers. In: Shoham, S., Vizel, Y.
(Eds.), In: International conference on computer aided verification
(pp. 92–106). Cham: Springer (2022)r

65. Nipkow,T.,Wenzel,M., Paulson,L.C.: Isabelle/HOL: aproof assis-
tant for higher-order logic, pp. 67–104. Springer, Cham (2002)

66. Nurwidyantoro, A., Shahin, M., Chaudron, M., Hussain, W.,
Perera, H., Shams, R.A.,Whittle, J.: Towards a human values dash-
board for software development: an exploratory study. In: Lanubile,
F., Kalinowski,M., Baldassarre,M.T. (Eds.), In: Proceedings of the
15th international symposium on empirical software engineering
and measurement (esem) (pp. 23:1–23:12). ACM (2021)

67. Nurwidyantoro, A., Shahin, M., Chaudron, M.R.V., Hussain, W.,
Shams, R.A., Perera, H., Whittle, J.: Human values in software
development artefacts: a case study on issue discussions in three
android applications. Info. Softw. Technol. 141, 106731 (2022).
https://doi.org/10.1016/j.infsof.2021.106731

68. Ojamaa, A., Haav, H.-M., Penjam, J.: Semi-automated genera-
tion of DSL meta models from formal domain ontologies. In:
Bellatreche, L., Manolopoulos, Y. (Eds.), In: Model and data engi-
neering: 5th international conference, MEDI 2015 (pp. 3–15).
Cham: Springer (2015)

69. Parr, T.: The definitive ANTLR 4 reference. Pragmatic Bookshelf,
Raleigh (2013)

70. Peyras, Q., Bodeveix, J.-P., Brunel, J., Chemouil, D.: Sound verifi-
cation procedures for temporal properties of infinite-state systems.
In: Silva,A., Leino,K.R.M. (Eds.), In:Computer aided verification:
33rd international conference, CAV 2021 (pp. 337–360). Springer
(2021)

71. Pnueli, A.: The temporal logic of programs. In: Proceedings of the
18th annual symposium on foundations of computer science (pp.
46–57). IEEE Computer Society (1977)

72. Punnoose, R.J., Armstrong, R.C., Wong, M.H., Jackson, M.: Sur-
vey of existing tools for formal verification. (Tech. Rep.). USDOE
National Nuclear Security Administration (NNSA) (2014)

73. Richter, C., Wehrheim, H.: Pesco: predicting sequential combina-
tions of verifiers. In: Beyer, D., Huisman, M., Kordon, F., Steffen,
B. (Eds.), In: Tools and algorithms for the construction and analy-
sis of systems: 25 years of TACAS: TOOLympics (pp. 229–233).
Springer (2019)

74. Rothenberg, B.-C., Grumberg, O.: Must fault localization for pro-
gram repair. In: Lahiri, S.K., Wang, C. (Eds.), In: Computer aided
verification: 32nd international conference, CAV 2020 (pp. 658–
680). Springer (2020)

75. Ryou,W., Chen, J., Balunovic, M., Singh, G., Dan, A., Vechev, M.:
Scalable polyhedral verification of recurrent neural networks. In:
Silva, A., Leino, K.R.M. (Eds.), In: Computer aided verification:
33rd international conference, CAV 2021 (pp. 225–248). Springer
(2021)

123

http://arxiv.org/abs/1809.09805
https://doi.org/10.1016/j.scico.2013.03.017
https://doi.org/10.1007/978-3-031-13185-1_10
https://doi.org/10.1145/177492.177726
https://doi.org/10.1145/177492.177726
https://doi.org/10.1145/3550355.3552426
https://doi.org/10.1007/s10617-012-9096-8
https://doi.org/10.1007/s10617-012-9096-8
https://doi.org/10.1016/j.infsof.2021.106731


Extract, model, refine: improved modelling of program verification tools...

76. Sajnani, H., Saini, V., Ossher, J., Lopes, C.V.: Is popularity a mea-
sure of quality? an analysis of maven components. In: Proceedings
of the 2014 IEEE International conference on software mainte-
nance and evolution (pp. 231–240) (2014)

77. Schlick, R., Felderer, M., Majzik, I., Nardone, R., Raschke, A.,
Snook, C.F., Vittorini, V.: A proposal of an example and experi-
ments repository to foster industrial adoptionof formalmethods. In:
Margaria, T., Steffen, B. (Eds.), In: Proceedings of the eighth inter-
national symposium on leveraging applications of formal methods,
verification and validation (ISoLA) (Vol. LNCS 11247, pp. 249–
272). Springer (2018)

78. Shaaban, A.M., Schmittner, C., Gruber, T., Mohamed, A.B.,
Quirchmayr, G., Schikuta, E.: Ontology-based model for automo-
tive security verification and validation. In: Proceedings of the 21st
international conference on information integration and web-based
applications & services (IIWAS) (pp. 73–82). ACM (2019)

79. Shipilëv, A.: Java concurrency stress (jcstress). (2013) https://
github.com/openjdk/jcstress/

80. Siavvas, M., Jankovic, M., Kehagias, D., Tzovaras, D.: Is pop-
ularity an indicator of software security? In: Proceedings if the
international conference on intelligent systems (IS) (pp. 692–697)
(2018)

81. Stachowiak, H.: Allgemeinemodelltheorie. Springer, Cham (1973)
82. Tomasco, E., Nguyen, T.L., Inverso, O., Fischer, B., La Torre, S.,

Parlato, G.: Mu-cseq 0.4: individual memory location unwindings.
In: Chechik, M., Raskin, J.-F., (Eds.), In: Tools and algorithms
for the construction and analysis of systems: 22nd international
conference, TACAS 2016 (pp. 938–941). Springer (2016)

83. Tomassetti, F., Zaytsev, V.: Reflections on the lack of adop-
tion of domain specific languages. In: Burgueño, L., Kristensen,
L.M. (Eds.), In: STAF Workshop proceedings (STAF) (Vol. 2707,
pp. 85–94). CEUR-WS.org. (2020) http://ceur-ws.org/Vol-2707/
oopslepaper5.pdf

84. Usman, M., Gopinath, D., Sun, Y., Noller, Y., Păsăreanu, C.S.:
Nnrepair: constraint-based repair of neural network classifiers. In:
Silva, A., Leino, K.R.M. (Eds.), In: Computer aided verification:
33rd international conference, CAV 2021 (pp. 3–25). Springer
(2021)

85. van Dijk, T.: Oink: an implementation and evaluation of modern
parity game solvers. In:Beyer,D.,Huisman,M. (Eds.), In: Proceed-
ings of the 24th international conference on tools and algorithms
for the construction and analysis of systems (TACAS) (Vol. 10805,
pp. 291–308). Springer (2018)

86. Whittle, J., Ferrario, M.A., Simm, W., Hussain, W.: A case for
human values in software engineering. IEEE Softw. 38(1), 106–
113 (2021). https://doi.org/10.1109/MS.2019.2956701

87. Wiedijk, F.: Comparing mathematical provers. In: Asperti, A.
Buchberger, B., Davenport, J.H. (Eds.), In: Proceedings of the
second international conference on mathematical knowledge man-
agement (MKM) (Vol. 2594, pp. 188–202). Springer (2003)

88. Wigderson, A.: Mathematics and computation: ideas revolution-
izing technology and science. Princeton University Press. (2019)
https://www.math.ias.edu/avi/book

89. Winter, S., Timperley, C.S., Hermann, B., Cito, J., Bell, J., Hilton,
M., Beyer, D.: A retrospective study of one decade of artifact eval-
uations. In: Proceedings of the 30th ACM joint European software
engineering conference and symposium on the foundations of soft-
ware engineering (pp. 145–156). NewYork, NY,USA:Association
for Computing Machinery (2022)

90. Wolf, F.A., Arquint, L., Clochard, M., Oortwijn, W., Pereira, J.C.,
Müller, P.: Gobra: modular specification and verification of go pro-
grams. In: Silva, A., Leino, K.R.M. (Eds.), In: Proceedings of
the 33rd international conference on computer aided verification
(CAV) (Vol. 12759, pp. 367–379). Springer (2021)

91. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.S.: Formal
methods: practice and experience.ACMComput. Surv. 41(4), 1–36
(2009). https://doi.org/10.1145/1592434.1592436

92. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla:
portfolio-based algorithm selection for SAT. J. Artif. Intell. Res.
32, 565–606 (2008). https://doi.org/10.1613/jair.2490

93. Zaytsev, V.: Renarrating linguistic architecture: a case study. In:
Hardebolle, C., Syriani, E., Sprinkle, J., Mészáros, T. (Eds.), In:
Post-proceedings of the sixth international workshop on multi-
paradigm modeling (MPM 2012) (pp. 61–66). ACM Digital
Library (2012)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Sophie Lathouwers received a
Ph.D. degree in Computer Sci-
ence at the University of Twente
in the Netherlands. Her research
interests include specifications, soft-
ware verification, software engi-
neering, tool usability, taxonomies
and open research data. She was
one of the co-organisers of the
first Alice & Eve workshop. She
is currently working at TNO on
the topic of semantic interoper-
ability and knowledge graphs.

Yujie Liu received a Master’s
degree in Computer Science at
the University of Twente in the
Netherlands, specialising in Soft-
ware Technology. His is passion-
ate about GPGPU, mutation test-
ing, and the semantic web.

Vadim Zaytsev is an Associate
Professor of Software Evolution,
and an educational Programme
Director of Computer Science at
the University of Twente. He is a
software language engineer doing
research in software analysis, mod-
elling and restructuring, often focus-
ing on maintenance issues around
legacy systems and languages.

123

https://github.com/openjdk/jcstress/
https://github.com/openjdk/jcstress/
http://ceur-ws.org/Vol-2707/oopslepaper5.pdf
http://ceur-ws.org/Vol-2707/oopslepaper5.pdf
https://doi.org/10.1109/MS.2019.2956701
https://www.math.ias.edu/avi/book
https://doi.org/10.1145/1592434.1592436
https://doi.org/10.1613/jair.2490

	Extract, model, refine: improved modelling of program verification tools through data enrichment
	Abstract
	1 Introduction
	2 Related work
	3 The megamodel of PV-levels
	4 Data set of verification tools
	4.1 Methodology
	4.1.1 Choose data sources
	4.1.2 Identify tools in papers
	4.1.3 Collect data
	4.1.4 Define megamodel
	4.1.5 Classify tools
	4.1.6 Identify trends

	4.2 Data enrichment
	4.2.1 Workflow
	4.2.2 Author-contributor relations

	4.3 Data set statistics
	4.3.1 Data enrichment statistics


	5 Trends in PV-levels
	5.1 PV0: potential tools
	5.2 PV1: essential tools
	5.3 PV2: creational tools
	5.4 PV3: property checking tools
	5.5 PV4: specification checking tools
	5.6 PV5: fully controlled verification tools
	5.7 PV6: proving tools

	6 Conclusion & roadmap
	6.1 Threats to validity
	6.2 Roadmap for the future

	Acknowledgements
	References


