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Abstract. Autonomous cyber-physical systems must be able to operate safely in a wide
range of complex environments. To ensure safety without limiting mitigation options,
these systems require detection of safety violations by mitigation trigger deadlines. As
a result of these system’s complex environments, multimodal prediction is often required.
For example, an autonomous vehicle (AV) operates in complex traffic scenes that result
in any given vehicle having the ability to exhibit several plausible future behavior modes
(e.g., stop, merge, turn, etc.); therefore, to ensure collision avoidance, an AV must be able
to predict the possible multimodal behaviors of nearby vehicles. In previous work, model
predictive runtime verification (MPRV) successfully detected future violations by a given
deadline, but MPRV only considers a single mode of prediction (i.e., unimodal prediction).
We design multimodal model predictive runtime verification (MMPRV) to extend MPRV
to consider multiple modes of prediction, and we introduce Predictive Mission-Time Lin-
ear Temporal Logic (PMLTL) as an extension of MLTL to support the evaluation of prob-
abilistic multimodal predictions. We examine the correctness and real-time feasibility of
MMPRV through two AV case studies where MMPRV utilizes (1) a physics-based multi-
modal predictor on the F1Tenth autonomous racing vehicle and (2) current state-of-the-art
deep neural network multimodal predictors trained and evaluated on the Argoverse
motion forecasting dataset. We found that the ability to meet real-time requirements was
a challenge for the latter, especially when targeting an embedded computing platform.

1 Introduction
Autonomous cyber-physical systems such as autonomous vehicles (AVs), unmanned aerial
systems (UAS), and robots are considered safety-critical due to their regular and close interaction
with humans. Runtime verification (RV) offers an approach to monitor these systems for safety
violations in a real-time online manner [9,24]. On-board RV can both detect safety violations
and trigger mitigation actions to ensure safety, but the most effective mitigation strategies could
require fault detection of future violations to prevent unsafe states [46,63,65,66]. For example,
if it takes an AV three seconds to come to a complete stop, then the AV must apply the brakes
three seconds before a complete stop is required to mitigate an impending crash. Due to the
complexity of these systems’ environments, multiple modes of future behavior are plausible
[27,44]. For example, a human driver can display different behaviors given a specific traffic
scene (e.g., stop, slow down, swerve, merge, turn, etc.). Therefore, for RV to be effective in
such systems, it must be able to support multimodal predictions.

Predictive runtime verification [46,66] employs model predictors to detect future specification
violations. In previous work, some utilize the given knowledge of a system to produce a model
predictor [16,22,46,65], while others learn a system model by statistical learning [6,7,8,47,63]
or machine learning [23,38,42], but all of these works focus solely on unimodal prediction.
While the complete set of a system’s reachable states is infeasible to directly compute in
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real-time, some have also looked at variations of reachability analysis that compute the reach-
ability offline or over-approximate the reachability online in real-time [1,3,10,12,15,17,55,64].
Overall, reachability analysis produces over-conservative results, potentially leading to numerous
false positives; therefore, multimodal prediction has become increasingly popular as it reduces
the complete set to a handful of the most plausible future behaviors, but to the best of our
knowledge, multimodality has not been considered in predictive runtime monitors. Therefore,
we introduce Multimodal Model Predictive Runtime Verification (MMPRV), which evaluates
a safety specification by a deadline d givenK finite sequences of future states.

MMPRV is a direct extension of Model Predictive Runtime Verification (MPRV) [65] and
leverages MPRV’s definition of deadline and unique utilization of maximum observed data
and minimum predicted data to make an on-deadline evaluation. The MPRV framework was
deployed on the R2U2 (Realizable, Responsive, Unobtrusive Unit) RV engine [29,50,51,53]
and was the first predictive RV framework to provide memory and real-time guarantees. We
also deploy MMPRV on the R2U2 RV engine as it is one of the few RV engines that can
operate in real-time [19]. Additionally, R2U2 has a strong history of being deployed on real-time,
resource-constrained, mission-critical systems [5,13,20,26,33] and has recently undergone
changes for added user usability and further reduction of memory requirements [29,30].

R2U2 natively encodes specifications expressed in Mission-time Linear Temporal Logic
(MLTL), but we introduce Predictive MLTL (PMLTL) as an extension of MLTL with the addi-
tion of four important features: (1) semantics that utilize maximum observed data and minimum
predicted data to evaluate a specification by a deadline d, (2) ability to reason overK finite se-
quences of future states (i.e., supports multimodality), (3) supports the evaluation of a sequence of
probabilistic atomic propositions, and (4) allows user-defined probabilistic inference techniques.
No existing logic supports even two of these features. Several extensions of Signal Temporal
Logic (STL) [43] reason about probabilistic signals by quantifying the probability of satisfying
an atomic predicate (C2TL [28], StTL [34], StSTL [36], STL-U [42], PrSTL [52], and ProbSTL
[59]), but they all make strong assumptions on the underlying probabilistic inference. There is
a single extension of Metric Temporal Logic (MTL) [4] called P-MTL [58] that allows the prob-
abilistic inference technique to be determined by the user. Additionally, STL-U is the only afore-
mentioned extension that can also reason about a sequence of probabilistic atomic predicates.

We design MMPRV to allow for any user-defined model predictor, extending its applicability
to a wide range of systems. To this extent, we minimize MMPRV’s memory requirements
for deployability to resource-constrained, real-time systems. We examine the correctness and
real-time feasibility of MMPRV through two case studies that employ (1) a physics-based
Monte Carlo (MC) multimodal predictor and (2) state-of-the-art (SOTA) deep neural network
(DNN) multimodal predictors. We illustrate that MMPRV determines the verdict of a PMLTL
specification φ by a deadline d utilizingK finite sequences of future states produced by these
predictors. In the first case study, we target an embedded computing platform (i.e., NVIDIA®

Jetson Xavier NX) and observe that our implementation is feasible in real-time with a 20 Hz
control loop, but we do not achieve SOTA accuracy through this approach. In the second case
study, we examine the real-time feasibility of SOTA DNNs, but none of these DNNs meet the
real-time requirements of a 10 Hz control loop on the NVIDIA® Jetson Xavier NX and instead
require the computing capabilities of a desktop GPU.

Our contributions include (1) syntax and semantics of PMLTL (Section 3.1), (2) the MMPRV
algorithm and proofs of correctness (Section 3.2), (3) memory requirements for MMPRV (Sec-
tion 3.3), and (4) application and real-time feasibility of MMPRV utilizing a physics-based MC
multimodal predictor on the F1Tenth autonomous racing vehicle (Section 4.1) and (5) utilizing
SOTA DNN multimodal predictors trained and evaluated on the Argoverse dataset (Section 4.2).
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2 Preliminaries
2.1 Mission-Time Linear Temporal Logic (MLTL) [35,50]
MLTL is a variant of LTL over finite traces with temporal intervals that are bounded, closed, and
discrete. MLTL expresses the most commonly utilized fragments of MTL [4] and STL [43].
Definition 1. (MLTL Syntax) The syntax of an MLTL formula φ over a set of atomic proposi-
tions AP is recursively defined as:

φ ::=true | false | p | ¬ψ | ψ ∧ ξ | ψ ∨ ξ |□Iψ |3Iψ | ψ UI ξ | ψ RI ξ
where p∈AP is an atom, ψ and ξ are MLTL formulas, and I is a closed interval [lb,ub] where
lb and ub denote the lower and upper bound, respectively, such that lb≤ub and lb,ub∈N0.

Definition 2. (Finite Trace) A finite trace, denoted by π, is a finite sequence of sets of atomic
propositions. The ith set is denoted by π(i) and contains the atomic propositions that are
satisfied at the ith time step. |π| denotes the length of π (where |π|<∞), and π[lb,ub] denotes
the trace segment π(lb),π(lb+1),...,π(ub).

Definition 3. (MLTL Semantics) We recursively define π,i |=φ (finite trace π starting from
time index i≥0 satisfies, or “models” MLTL formula φ) as
• π,i |=true
• π,i |=p for p∈AP iff p∈π(i)
• π,i |=¬ψ iff π,i |̸=ψ
• π,i |=ψ ∧ ξ iff π,i |=ψ and π,i |=ξ
• π,i |=ψ U[lb,ub] ξ iff |π| ≥ i+ lb and ∃j ∈ [i+ lb,i+ub] such that π,j |= ξ and ∀k < j

where k∈ [i+lb,i+ub] we have π,k |=ψ
Given two MLTL formulas ψ and ξ, they are semantically equivalent (denoted by ψ≡ξ) if
and only if π |= ψ⇔ π |= ξ for all traces π. To complete the MLTL semantics, we define
false≡¬true, ψ ∨ ξ≡¬(¬ψ ∧ ¬ξ), ¬(ψ UI ξ)≡(¬ψRI ¬ξ), and ¬3Iψ≡□I¬ψ. MLTL
also keeps the standard operator equivalences from LTL, including 3Iψ≡(true UI ψ), and
□Iψ≡(falseRI ψ). Notably, MLTL discards the next (X ) operator since Xψ≡2[1,1]ψ.

2.2 Abstract Syntax Tree Architecture

(a) tR=0 (b) tR=1

Fig. 1. Abstract syntax tree evaluation of φ=□[0,1]a0∧3[0,1]a1 where a0,a1∈AP. The highlighted
nodes are the nodes currently being updated at each step as verdicts are propagated upwards through the
tree. Results are shown for the current timestamp tR=0 and tR=1.

R2U2 is a stream-based RV engine that reevaluates MLTL formulas for each time index
i. These MLTL formulas are represented by decomposing them into subformula nodes in an
Abstract Syntax Tree (AST). R2U2 determines the evaluation of each subformula node from
the bottom-up and propagates the verdict to the parent node(s). Each node of the AST computes
and stores verdict-timestamp tuples Tψ=(v,τ) for its subformula ψ, where v∈{true,false}
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and τ∈N0. Each node stores the verdict-timestamp tuples in a shared connection queue (SCQ);
the SCQ is a circular buffer that overwrites verdict-timestamp tuples in a circular manner. Figure
1 demonstrates an example of how R2U2 evaluates over an AST.
Propogation Delay. To compute the SCQ size of each node in the AST, the propagation delay
of each subformula must first be computed.

Definition 4. (Propagation Delay [33]) The propagation delay of an MLTL formula φ is
the time between when a set of propositions π(i) arrives and when the verdict of π,i |=φ is
determinable. The best-case propagation delay (φ.bpd) is its minimum time delay, and the
worst-case propagation delay (φ.wpd) is its maximum time delay.

Definition 5. (Propagation Delay Semantics [33]) Let ψ and ξ be MLTL subformulas of
MLTL formula φ where the best- and worst-case propagation delay for an MLTL formula φ is
structurally defined as follows:

• φ∈AP :

{
φ.wpd=0

φ.bpd=0
• φ=¬ψ :

{
φ.wpd=ψ.wpd

φ.bpd=ψ.bpd

• φ=ψ ∨ ξ or φ=ψ ∧ ξ :

{
φ.wpd=max(ψ.wpd, ξ.wpd)

φ.bpd=min(ψ.bpd, ξ.bpd)

• φ=2[lb,ub]ψ or φ=3[lb,ub]ψ :

{
φ.wpd=ψ.wpd+ub

φ.bpd=ψ.bpd+lb

• φ=ψ U[lb,ub] ξ or φ=ψR[lb,ub] ξ :

{
φ.wpd=max(ψ.wpd, ξ.wpd)+ub

φ.bpd=min(ψ.bpd, ξ.bpd)+lb

SCQ Memory Size. To promote deployability to resource-constrained platforms, R2U2 mini-
mizes the size requirement for its SCQs. The minimum SCQ size of an AST node g is determined
by the worst-case propagation delay of its sibling nodes and its own best-case propagation delay.
A node g must store verdict-timestamp tuples in its SCQ until all of its siblings have the same
timestamp τ for these tuples to be consumed by their parent node. Therefore, the size of node g’s
SCQ corresponds to the maximum timestamp mismatch between node g and its siblings. If we let
Sg be the set of all of g’s sibling nodes, then the size of g’s SCQ is given by the following [33,65]:

SCQsize(g)=max(max{s.wpd | s∈Sg}−g.bpd, 0)+1 (1)
2.3 Model Predictive Runtime Verification (MPRV) [65]
MPRV strives to produce the most accurate evaluation of a specification φ possible by a
mitigation trigger deadline d to allow for effective mitigation triggering. Since observed data is
often more accurate than predicted data, MPRV utilizes maximum observed data (i.e., observed
data for time steps up to and including the current timestamp) and minimal predicted data (i.e.,
predicted data only after the current timestamp) to make an on-deadline evaluation.

Definition 6. (Deadline) Given an MLTL formula φ and trace π starting from time index i≥0,
the deadline d∈Z is the number of time steps measured relative to i by which the verdict of φ
must be determined such that 0≤i+d≤M , whereM denotes the timestamp at the end of the
mission (i.e., φ cannot be evaluated before the mission begins or after it ends).

Definition 7. (Finite Trace with Prediction) Trace π̂ is a finite trace (following from Definition
2) that has an observed and predicted segment such that the segment π̂[0,|π|−1]=π where π is
derived from observed data and |π|≤i+d, and the segment π̂[|π|,|π̂|−1] is populated using
prediction to determine the verdict of a MLTL specification φ for time index i by deadline d.
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Definition 8. (MLTL Semantics with Deadline) MLTL semantics with deadline d is an extension
of the MLTL Semantics in Definition 3. Given a finite trace π, time index i, and deadline d to
produce a finite trace with prediction π̂ (following from Definition 7), we recursively define
π,i,d |=φ (trace π starting from time index i≥0 satisfies, or “models” MLTL formula φ by
deadline d) as
• π,i,d |=true
• π,i,d |=p for p∈AP iff π̂,i |=p such that p∈ π̂(i)
• π,i,d |=¬ψ iff π,i,d |̸=ψ
• π,i,d |=ψ ∧ ξ iff π,i,d |=ψ and π,i,d |=ξ
• π,i,d |=ψ U[lb,ub] ξ iff |π̂|≥i+lb and ∃j∈ [i+lb,i+ub] such that π,j,d |=ξ and ∀k<j

where k∈ [i+lb,i+ub] we have π,k,d |=ψ
Definition 9. (Prediction Horizon) The prediction horizonHp is the length of the predicted
segment of π̂ (i.e.,Hp= |π̂|−|π|). Given an MLTL formulaφ, the maximum prediction horizon
is denoted bymax(Hp) and is bounded such thatmax(Hp)=φ.wpd−d.

To prevent overwriting original SCQ data with any predicted data, we determinemax(Hp)
at design time and addmax(Hp) extra entries to each SCQ given by the following equation:

SCQsize(g)=max(max{s.wpd | s∈Sg}−g.bpd, 0)+max(Hp)+1 (2)
Note that we improve on these memory requirements in Section 3.3.

3 Multimodal Model Predictive Runtime Verification (MMPRV)
MMPRV extends MPRV [65] to support multimodal prediction and to reason over a finite
sequence of sets of probabilistic atomic propositions (i.e., atomic propositions with associated
probability). To determine the verdict of a PMLTL formula φ by a deadline d (Definition
6) such that π,i,d |=φ, either the verdict must be determinable by the trace π[0,i+d] (i.e.,
observed data only) or prediction must be utilized by populatingK finite traces with prediction
π̂0,π̂1,...,π̂K−2,π̂K−1 (Definition 10 below). In other words, if the verdict of π,i,d |=φ is
unknown at the current timestamp tR=i+d, then MMPRV must receive predicted values to
determine the verdict of φ by deadline d. If MMPRV reveals that φ does not hold (i.e., the
specification was violated), the result can trigger an appropriate mitigation action.

Definition 10. (K Finite Traces with Prediction) LetK∈N be the number of predicted finite
traces (following from Definition 2) denoted by π̂0,π̂1,...,π̂K−2,π̂K−1 where π̂j is the jth
predicted trace. Each trace has an observed and a predicted segment. Every trace has the identical
observed segment such that ∀j ∈ [0,K−1] we have π̂j[0,|π|−1] = π where π is derived
from observed data and |π|≤ i+d. We populate each trace segment π̂j[|π|,|π̂|−1] (where
j∈ [0,K−1]) using a different mode of prediction to make an evaluation decision by d.

Fig. 2. K finite traces with prediction evaluating
π,8,−4 |= □[0.3]a. White boxes indicate ob-
served data and gray boxes are predicted data.

Consider an autonomous vehicle (AV) where
the specification violation of φ=□[0,3]a (where
a is an atomic proposition) indicates a collision
and the appropriate mitigation action is coming to
a complete stop. Let’s assume that the mitigation
trigger deadline for the AV to brake and come to
a complete stop is d=−4 (i.e., the verdict must
be determined four time steps before time index
i). Therefore, for this AV to ensure safety, it must
be able to determine the verdict of π,i,−4 |=φ.
At the current timestamp tR = 4, as illustrated
in Figure 2, MMPRV must determine the verdict
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of π,8,−4 |= φ (i.e., tR = i + d = 8 + (−4) = 4). Following from Definition 9, the
max(Hp)=φ.wpd−d=3−(−4)=7; therefore, MMPRV will obtain up to seven predicted
values of a for allK traces such that MMPRV will incrementally obtain predicted values for
π̂j(tR+1),π̂j(tR+2),...,π̂j(tR+max(Hp)) ∀j∈ [0,K−1] until φ evaluates to true or false.
In Figure 2, this means we incrementally populate π̂j(5),π̂j(6),...,π̂j(11) ∀j∈ [0,K−1] with
predicted values of a until the verdict of π,8,−4 |=φ is known. At the next timestamp (tR=5),
these predictions are no longer relevant; therefore, MMPRV will obtain new predicted values for
π̂j(6),π̂j(7),...,π̂j(12) ∀j∈ [0,K−1] until the verdict of π,9,−4 |=φ is determinable.
3.1 Predictive Mission-Time Linear Temporal Logic (PMLTL)
PMLTL is an extension of MLTL (Definition 3) that evaluates a specification φ utilizing K
finite traces with prediction π̂0,π̂1,...,π̂K−2,π̂K−1 (Definition 10) to determine the verdict of φ
by a deadline d. (Note that unimodal prediction is still supported within PMLTL whenK=1.)
Predictions often have an associated probability, and while it is often safe to assume that the
observed segment of a trace π̂ (i.e., π) has a probability of 1.0 because it has been physically
observed, observed data can also have an associated uncertainty (e.g., sensor error). As a result,
PMLTL introduces the probability operator Pδ, which allows specification and evaluation over
sequences of sets of probabilistic atomic propositions. To this extent, a PMLTL specification
can quantity the amount of uncertainty that is deemed acceptable by the user. For example,
P0.95(□[0,3]a) is a PMLTL formula that expresses “the probability of a being globally true
from 0 to 3 is greater than or equal to 95%”. PMLTL also supports the evaluation of observed
and predicted traces without the consideration of probability.

Definition 11. (PMLTL Syntax) The syntax of PMLTL is an extension of the MLTL syntax
defined in Definition 1. The syntax of a PMLTL formula φ overK sets of atomic propositions
AP is recursively defined as:

φ ::=true | false | p | ¬ψ | ψ ∧ ξ | ψ ∨ ξ |□Iψ |3Iψ | ψ UI ξ | ψ RI ξ | Pδψ
whereK∈N, p∈AP, ψ and ξ are PMLTL formulas, δ∈ [0,1] is the desired probability, and I
is a closed interval [lb,ub] where lb and ub denote the lower and upper bound, respectively, such
that lb≤ub and lb,ub∈N0.

Definition 12. (Probability Space of K Finite Traces) Given a time index i, K finite traces of
prediction π̂0,π̂1,...,π̂K−2,π̂K−1, and an atomic proposition p∈AP, let the sample space
Ωi={p∈ π̂0(i),p /∈ π̂0(i),p∈ π̂1(i),p /∈ π̂1(i),...,p∈ π̂K−2(i),p /∈ π̂K−2(i),p∈ π̂K−1(i),p /∈
π̂K−1(i)}. Let the σ-algebra Fi = 2Ωi (i.e., the powerset of Ωi) be a collection of events.
Let the probability measure Pi assign a probability Pi(A) to every event A in Fi such that
Pi :Fi 7→ [0,1] where Pi(Ωi)=1 and Pi(A)=

∑
ω∈A

Pi({ω})≤1 1. Note that the complement

of an eventA∈Fi is denoted asAc=Ωi\A such that Pi(Ac)=1−Pi(A). Then, (Ωi,Fi,Pi)
defines the probability space of K finite traces at time index i for p∈AP.

Definition 13. (PMLTL Semantics) PMLTL semantics are an extension of the MLTL semantics
with deadline in Definition 8. Given a finite trace π, time index i, and deadline d to produce
K finite traces with prediction π̂0,π̂1,...,π̂K−2,π̂K−1 (following from Definition 10) and a
probability space (Ωi,Fi,Pi) for each p∈AP (as defined in Definition 12) 2, we recursively
define π,i,d |=φ (trace π starting from time index i≥0 satisfies, or “models” PMLTL formula
φ by deadline d according to K predictions) as

1 For all ω∈Ωi, Pi({ω}) is defined by the user’s choice of probabilistic inference (e.g., Markov chain,
Bayesian inference, normal distribution, etc.) but must follow the properties defined in Definition 12.

2 The probability space (Ωi,Fi,Pi) is only required if p∈AP is an operand of Pδ.
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• π,i,d |=true
• π,i,d |=p for p∈AP iff ∀j∈ [0,K−1] we have p∈ π̂j(i)
• π,i,d |=¬ψ iff π,i,d |̸=ψ
• π,i,d |=ψ ∧ ξ iff π,i,d |=ψ and π,i,d |=ξ
• π,i,d |=ψ U[lb,ub] ξ iff ∀j∈ [0,K−1] we have |π̂j|≥ i+lb and ∃j∈ [i+lb,i+ub] such

that π,j,d |=ξ and ∀k<j where k∈ [i+lb,i+ub] we have π,k,d |=ψ
• π,i,d |=Pδψ iff Pr(π,i,d |=ψ)≥δ where Pr(π,i,d |=ψ) (the probability of π,i,d |=ψ) is

defined recursively as follows:
− Pr(π,i,d |=true)= 1
− Pr(π,i,d |= p) = Pi(A) for p ∈ AP, A is an independent event, and A ∈ Fi s.t.

A=
K−1⋃
j=0

{ω∈Ωi | ω≡p∈ π̂j(i)}

− Pr(π,i,d |=¬ψ)=1−Pr(π,i,d |=ψ)
− Pr(π,i,d |=ψ ∧ ξ)=Pr(π,i,d |=ψ)∗Pr(π,i,d |=ξ)
− Pr(π,i,d |=ψ U[lb,ub] ξ)=Pr

(∨i+ub
m=i+lb

(
(
∧m−1
k=i+lbπ,k,d |=ψ) ∧ π,m,d |=ξ

))
Given two PMLTL formulas ψ and ξ, they are semantically equivalent (denoted by ψ≡ ξ)
if and only if π,i,d |= ψ ⇔ π,i,dj |= ξ for all possible K finite traces with prediction
π̂0,π̂1,...,π̂K−2,π̂K−1. PMLTL keeps the standard operator equivalences from MLTL with
the addition that these equivalences also apply to Pδψ (i.e., Pδ(false)≡Pδ(¬true), Pδ(ψ ∨
ξ) ≡ Pδ(¬(¬ψ ∧ ¬ξ)), Pδ(¬(ψ UI ξ)) ≡ Pδ(¬ψ RI ¬ξ), Pδ(¬3Iψ) ≡ Pδ(□I¬ψ),
Pδ(3Iψ) ≡ Pδ(true UI ψ), and Pδ(□Iψ) ≡ Pδ(false RI ψ)). Figure 3 illustrates a few
examples of determining the probability of φ (i.e., Pr(π,i,d |=φ)).

Time index i
0 1 2 3 4

a0∈ π̂0(i) true true false true false
Pi({a0∈ π̂0(i)}) 0.40 0.45 0.90 0.80 0.85
Pi({a0 /∈ π̂0(i)}) 0.00 0.00 0.00 0.00 0.00
a0∈ π̂1(i) false true true false true

Pi({a0∈ π̂1(i)}) 0.60 0.55 0.10 0.20 0.15
Pi({a0 /∈ π̂1(i)}) 0.00 0.00 0.00 0.00 0.00

Pr(π,i,d |=a0) 0.40 1.00 0.10 0.80 0.15

Time index i
0 1 2 3 4

a1∈ π̂0(i) true false false true true
Pi({a1∈ π̂0(i)}) 0.95 0.35 0.20 0.90 0.85
Pi({a1 /∈ π̂0(i)}) 0.05 0.65 0.80 0.10 0.15

Pr(π,i,d |=a1) 0.95 0.65 0.80 0.90 0.85

Time index i
0 1 2 3 4

Pr(π,i,d |=a0∨a1) 0.97 1.00 0.82 0.98 0.8725
Pr(π,i,d |=□[0,1]a0) 0.40 0.10 0.08 0.12 −
Pr(π,i,d |=3[0,1]a1) 0.9825 0.93 0.98 0.985 −

Pr(π,i,d |=□[0,1]a0∧3[0,1]a1) 0.393 0.093 0.0784 0.1182 −
Pr(a0U[0,1]a1) 0.963 0.93 0.818 0.968 −

Fig. 3. Determining the probability of φ (i.e., Pr(π,i,d |=φ)) where a0,a1∈AP
3.2 MMPRV Algorithm
Algorithm 1 defines the MMPRV algorithm for the R2U2 engine. Offline, the Configuration
Compiler for Property Organization (C2PO) [29] compiles PMLTL formula(s) for input into
R2U2 by decomposing these formula(s) into an AST (Section 2.2). The AST is a list of nodes
in topological order (i.e., child nodes appear before their parent nodes); therefore, evaluating
the AST at a specific timestamp means sequentially evaluating each of its nodes (lines 1–2
and 11–12 of Algorithm 1). Algorithm 1 first evaluates the AST based on observed data only



8 A. Aurandt et al.

Algorithm 1: MMPRV Algorithm
Input: Current timestamp: tR; Deadline: d; Prediction modes:K; Finite trace: π[0,tR];
AST representing PMLTL formulaφ:φAST

1 foreach Node g∈φAST do // Update φAST for current time stamp tR
2 Node step([π],tR,g); // Algorithm 2
3 if read(φ.Queue).τ <tR−d then // Prediction required
4 foreach Node g∈φAST do // store original AST state
5 Store Node g’s metadata; // e.g., read/write pointers
6 foreach j∈ [0,K−1] do π̂j←π ; // initialize π̂j,∀j∈ [0,K−1] with π
7 t←tR; // initialize t with current timestamp
8 while read(φ.Queue).τ <tR−d do // if prediction is needed, loop
9 t←t+1 ; // look into next prediction step

10 foreach j∈ [0,K−1] do π̂j(t)←model predict(t,j) ; // update π̂j(t)
11 foreach Node g∈φAST do
12 Node step([π̂0,π̂1,...,π̂K−1],t,g); // Algorithm 2
13 foreach Node g∈φAST do // restore original AST state
14 Store Node g’s metadata; // e.g., read/write pointers

Algorithm 2: Node step: Evaluate a node g in φAST for one timestamp
1 functionNode step([π0,π1,...,πK−1],i,g) is

Input: Array of finite traces: [π0,π1,...,πK−1]; Time index: i; Node: g
2 if g is a descendant ofPδ operator then
3 if g is anAP operator then // record the value of the atomic proposition
4 p←0
5 for j←0 toK−1 do // evaluate Pr(g) based on K finite traces
6 if g ∈ πj(i) then p←p+get Pr(g∈πj(i));
7 else p←p+get Pr(g /∈πj(i));
8 g.Queue.write((p,i)); // write Tg=(p,τ)
9 else

10 (p,τ)← evaluate Node g; // Algorithms 4, 5, and 6
11 g.Queue.write((p,τ)); // write Tg=(p,τ)
12 else
13 if g is anAP operator then // record the value of the atomic proposition
14 for j←0 toK−1 do // evaluate g based on K finite traces
15 if g ∈ πj(i) then continue;
16 else g.Queue.write((false,i)) return; // write Tg=(v,τ)
17 g.Queue.write((true,i)); // write Tg=(v,τ)
18 else
19 (v,τ)← evaluate Node g; // Algorithm 3 and Algorithms 3-6 from [33]
20 g.Queue.write((v,τ)); // write Tg=(v,τ)

(lines 1–2). If the latest time index for a PMLTL formula φ produced by the AST (i.e., the latest
Tφ.τ found by reading the root node φ.Queue) is less than the current timestamp tR minus the
deadline d (i.e., the verdict of π,tR−d,d |=φ is unknown), then prediction is required (line 3).

MMPRV provides predictions based on maximum observed data; therefore, to retain observed
data in the SCQ that may still be relevant for future evaluations, we size each node according
to Equation 3 in Section 3.3. While the observed data is never overwritten, a node’s metadata
(e.g., its read and write pointers) will change as nodes are evaluated based on predicted data
(lines 11-12). Therefore, we store each node’s metadata before prediction starts (lines 4–5) and
restore it after prediction ends (lines 13–14) to ensure that predicted data is never unintentionally
reused at the next execution of Algorithm 1. To support multimodal prediction during the
prediction phase (lines 3–14), there areK finite traces with prediction (Definition 10) initialized
with observed data (line 6) and populated with predicted data generated by a user-defined
model predict function (line 10) until π,tR−d,d |=φ evaluates to true or false (line 8).

Each node of the AST contains a write pointer to store tuples within its SCQ and read
pointer(s) for its children’s SCQ(s). R2U2’s read and write SCQ operations are defined in [33].
With the addition of MMPRV, the write operation must never write past tR−d when utilizing
prediction to ensure maximum observed data is utilized for all future verdicts. Previously, each
node’s SCQ stored verdict-timestamp tuples (i.e., Tψ = (v,τ) as discussed in Section 2.2),
but with the addition of the probability operator Pδ, descendants of the probability operator
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(i.e., probabilistic operators) will now store a probability-timestamp tuple Tψ=(p,τ) where
p∈ [0.0,1.0]. Additionally, the worst-case propagation delay for probabilistic operators follows
Definition 5, but the best-case propagation delay is equivalent to the worse-case as the entire
interval [lb,ub] is required for evaluation (i.e., cannot evaluate early based on partial information).

Theorem 1 (Correctness of MMPRV Algorithm). Given the current timestamp tR, deadline
d, number of prediction modesK, trace π[0,tR], the AST representing the PMLTL formula φ
(φAST ), and a model predictor function (model predict), the MMPRV algorithm (Algorithm
1) utilizes maximum observed data and minimum predicted data to populate K finite traces
with prediction in order to evaluate π,i,d |=φ such that ∀i Tφ.v=true iff π,i,d |=φ.
Proof. MMPRV makes evaluations utilizing all observed data values from π before prediction
is even considered (lines 1–2). After this initial evaluation on observed data, if Tφ.τ≥tR−d,
then all deadlines have been met and MMPRV terminates guaranteeing to have determined the
verdict of π,i,d |=φ based on observed data only. But if Tφ.τ <tR−d (line 3), then MMPRV
takes maximum observed data (line 6) augmented incrementally withK modes of minimum
prediction data until MMPRV produces the tuple such that Tφ.τ=tR−d (lines 8–12); therefore,
MMPRV only terminates when the verdict of π,tR−d,d |=φ is determinable. ⊓⊔

Algorithm 3: Probability Operator: Pδψ

1 At each new input Tψ:
2 return (Tψ.p>=δ, Tψ.τ)

Algorithm 4: Probabilistic
Negation Operator: Pr(π,i,d |=¬ψ)
1 At each new input Tψ:
2 return (1−Tψ.p, Tψ.τ)

Algorithm 5: Probabilistic And Operator:
Pr(π,i,d |=ψ ∧ ξ)
1 At each new input (Tψ, Tξ) s.t. Tψ.τ=Tξ.τ :
2 return (Tψ.p∗Tξ.p, Tψ.τ)

Algorithm 6: Probabilistic Until Operator: Pr(π,i,d |=ψ U[lb,ub] ξ)

1 At each new input (Tψ, Tξ) s.t. Tψ.τ=Tξ.τ :
2 if Tψ.τ−ub≥0 then // check if i≥0
3 ptemp=Tξ.p // initialize ptemp to Pr(π,i+ub,d|=ξ) s.t.Tξ.τ=i+ub
4 for t←1 to ub−lb do // iterate backwards through ψ and ξ’s SCQs
5 ptemp=ptemp∗read(ψ.Queue,ψ.rd ptr−t).p
6 ptemp=(1−[(1−read(ξ.Queue,ξ.rd ptr−t).p)∗(1−ptemp)]
7 return (ptemp, Tψ.τ−ub) // return probability-timestamp tuple

The correctness of Algorithms 2, 3, 4, and 5 follows directly from Definition 13.

Theorem 2 (Correctness of the Probabilistic Until Operator). Algorithm 6 correctly im-
plements φ=Pr(π,i,d |=ψ U[lb,ub] ξ) such that for all i≥ 0 Algorithm 6 returns the tuple

Tφ=
(
Pr

(∨i+ub
j=i+lb

(
(
∧j−1
k=i+lbπ,k,d |=ψ) ∧ π,j,d |=ξ

))
,i
)
.

Proof. To evaluate the probability of π,i,d |=ψ U[lb,ub] ξ, the probability values for the children
ψ and ξ for the entire interval [i+lb,i+ub] where lb≤ub are required (i.e., cannot evaluate
early based on partial information). When Tψ.τ−ub≥0 (line 2), the probability-timestamp
tuple of the Until operator can be calculated for i=Tψ.τ−ub such that i≥0 as the children
SCQs are guaranteed to have stored from [Tψ.τ−ub+lb,Tψ.τ ] or [i+lb,i+ub]. This guarantee
is the result of R2U2’s write operation [33] and the SCQ sizing discussed later in Section 3.3.
To calculate the probability, the equation Pr

(∨i+ub
j=i+lb

(
(
∧j−1
k=i+lbπ,k,d |=ψ) ∧ π,j,d |=ξ

))
expands to the following:
Pr

(
π,i+lb,d |=ξ ∨ (π,i+lb,d |=ψ ∧ π,i+lb+1,d |=ξ) ∨

(π,lb,d |=ψ ∧ π,i+lb+1,d |=ψ ∧ π,i+lb+2,d |=ξ) ∨...
∨ (π,i+lb,d |=ψ ∧ π,i+lb+1,d |=ψ ∧ ... ∧ π,i+ub−1,d |=ψ ∧ π,i+ub,d |=ξ)

)
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which can be rewritten to the following form using the law of distribution:
Pr

(
π,i+lb,d |=ξ ∨ (π,i+lb,d |=ψ ∧ (π,i+lb+1,d |=ξ ∨

(π,i+lb+1,d |=ψ ∧ (π,i+lb+2,d |=ξ ∨...
(π,i+ub−2,d |=ψ ∧ (π,i+ub−1,d |=ξ ∨

(π,i+ub−1,d |=ψ ∧ π,i+ub,d |=ξ)))))))...
)

Utilizing this form, the probability of π,i,d |=ψ U[lb,ub] ξ is calculated starting from the deepest
nested parentheses (i.e., π,i+ub,d |=ξ) on line 3 and iterating outward on lines 4–6 by iterating
backward through the children SCQs from Tψ.τ −ub− 1 to Tψ.τ −ub+ lb (e.g., next is
π,i+ub−1,d |=ξ ∨ (π,i+ub−1,d |=ψ ∧ previous)). Lastly, the probability-timestamp tuple
is returned (line 7) such that Tφ=

(
Pr

(∨i+ub
j=i+lb

(
(
∧j−1
k=i+lbπ,k,d |=ψ) ∧ π,j,d |=ξ

))
,i
)
. ⊓⊔

3.3 Memory Requirements for MMPRV
MMPRV determines verdicts based on maximum observed data. Additionally, R2U2 utilizes
Common Subexpression Elimination (CSE) to reduce memory requirements for sets of PMLTL
formulas, where common subexpressions share a singular SCQ node [29,33], but taking
advantage of this reduction requires that predicted data doesn’t overwrite observed data still
relevant to other subexpressions. Therefore, to prevent overwriting any relevant observed data
with predicted data, extra slots must be added to the SCQ size (as defined in Equation 1). In
[65], the SCQ size increased linearly withmax(Hp) as given by Equation 2, but this was an
overestimate that can be minimized. On the other hand, the addition of probabilistic operators
requires the children of probabilistic temporal operators (e.g., Until) to store results for the entire
interval from [i+lb,i+ub] for consumption by the parent (as discussed in Algorithm 6 and
Theorem 2). Therefore, the SCQ size is minimized and redefined in Equation 3.

Theorem 3 (MMPRV SCQ Size). Consider an AST representing PMLTL formula(s). Let Sg
be the set of all sibling nodes of g, TPg be the set of all probabilistic temporal parent nodes
of g, and max(Hp) be the maximum prediction horizon of g’s parent formula(s). Then, the
minimum size of g’s SCQ required for MMPRV is given by the following:
SCQsize(g)=max(max{s.wpd | s∈Sg}−g.bpd, 0)+max{p.ub−p.lb | p∈TPg}+

min
(
max

(
max{s.wpd | s∈Sg}−g.bpd, 0

)
+max{p.ub−p.lb | p∈TPg},

max
(
max(Hp)−1, 0

))
+1 (3)

Proof. Without prediction or probabilistic operators, SCQsize(g)=max(max{s.wpd | s∈
Sg}−g.bpd, 0)+1 (Equation 1) has already been proven in [65]. In Equation 1,max(max{
s.wpd | s ∈ Sg}−g.bpd, 0) represents the maximum timestamp mismatch between g and
its sibling nodes; node g may have to buffer this many tuples before they are consumed by
the parent node. +1 extra SCQ slot is added to the size to account for the implementation
requirement that a tuple must be buffered at least one cycle before it is consumed by a parent
node(s). With the addition of probabilistic operators, children of probabilistic temporal operators
must buffermax{p.ub−p.lb | p∈TPg}+1 extra SCQ slots (instead of just +1) as required
by Algorithm 6. Since observed data is always fully evaluated before predicted data enters
the SCQ, this +1 extra slot can be reused for predicted data without overwriting relevant
observed data (i.e., this slot will never be required after prediction starts). Therefore, to store
predicted data without overwriting relevant observed data, at mostmax(max(Hp)−1, 0) extra
slots need to be added to g’s SCQ as at most max(Hp) predicted verdict-timestamp tuples
ever enter the SCQ. On the other hand, at most max

(
max{s.wpd | s∈ Sg}−g.bpd, 0

)
+
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max{p.ub−p.lb | p∈TPg} extra slots are required to be added to g’s SCQ; any predicted data
that needs to be stored is limited by the timestamp mismatch between node g and its siblings
(following from the proof in [65]) and the temporal interval [i+lb,i+ub] of its parent node(s).
Therefore, only min

(
max(max{s.wpd | s ∈ Sg} − g.bpd, 0) +max{p.ub− p.lb | p ∈

TPg},max(max(Hp)−1, 0)
)

extra slots are required for proper storage of predicted data. ⊓⊔
MMPRV Total Memory Size. PMLTL specifications that utilize the probability operator Pδ
have larger memory requirements than similarly structured formulas that do not utilize Pδ (as
shown in Table 1). The reason for the larger memory requirement is twofold: (i) children of
probabilistic temporal operators may be required to store additional tuples for consumption by
their parents as defined in Equation 3 and (ii) probabilistic operators have to store probability–
timestamp tuples. Let’s assume verdicts are single-byte boolean values, probabilities are stored
as 8-byte doubles, and the timestamp is stored as a 4-byte integer. Therefore, a verdict-timestamp
tuple requires 5 bytes and a probability-timestamp tuple requires 12 bytes, and the memory size
in bytes of a single node g’s SCQ is given by the following:

SCQmemory(g)=

{
12∗SCQsize(g), descendant of Pδ
5∗SCQsize(g), otherwise

(4)

Furthermore, the total memory size in bytes of the entire AST is given by the following3:
ASTmemory=

∑
g∈AST

SCQmemory(g) (5)

Following Equation 5, Table 1 provides the memory required in bytes for the AST of var-
ious PMLTL formulas. Based on the deadline d (which determines max(Hp)), there is
a minimum and maximum size for each node such that max(max{s.wpd | s ∈ Sg} −
g.bpd,0)+max{p.ub−p.lb | p∈TPg}+1≤ SCQsize(g) ≤ 2∗(max(max{s.wpd | s∈
Sg}−g.bpd,0)+max{p.ub−p.lb | p∈TPg})+1. While probabilistic operators increase the
size of the AST, the sizing equation has a fixed upper bound (compared to linearly increasing
with max(Hp) as in [65]) such that we can look as far into the future as desired without
increasing the SCQ size beyond this upper bound.

Table 1.ASTmemory (in bytes) of example PMLTL formulas where a0,a1,a2,a3∈AP

Example PMLTL formulas Deadline d
-15 -5 0 5 15 30 45

□[0,30]a0 10 10 10 10 10 10 10
P0.80(□[0,30]a0) 749 749 737 677 557 389 389

□[0,10]a0∧3[0,20]a1 125 125 125 125 95 75 75
P0.95(□[0,10]a0∧3[0,20]a1) 1025 1025 1013 953 689 545 545

((□[0,5]a0)U[0,10]a1)∨((□[0,5]a2)U[0,10]a3) 445 445 435 385 245 245 245
P0.85((□[0,5]a0)U[0,10]a1)∨P0.98((□[0,5]a2)U[0,10]a3) 1551 1551 1527 1383 831 831 831

4 Autonomous Vehicle Case Study
Autonomous vehicles (AVs) are common targets of multimodal prediction research due to
the safety-critical and multimodal nature of vehicles and other road agents (e.g., pedestrians).
Conventionally, multimodal prediction has been produced by purely physics-based approaches
(e.g., Monte Carlo [11,60]). Physics-based approaches are known for having low computational
cost but are only valid for short prediction horizons (i.e., less than one second). For this reason,
deep learning methods have gained recent popularity as they can accurately predict longer
prediction horizons (i.e., several seconds); however, deep learning methods experience a higher

3 This only includes the memory requirement of the SCQs and doesn’t consider the node’s metadata.
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computational cost in terms of memory requirements and latency [27,44]. In this section, we
utilize a physics-based and deep learning-based multimodal model predictor.
4.1 F1Tenth Autonomous Racing

Fig. 4. F1Tenth autonomous vehicle.

System Description. The F1Tenth platform is a ROS-based
1/10th scale autonomous racing vehicle equipped with a
NVIDIA® Jetson Xavier NX, LiDAR, and vehicle electronic
speed controller (VESC) as shown in Figure 4. For our
experiments, we utilize the OpenAI Gym simulator provided
by the creators of the F1Tenth platform [45]. The simulator
models up to two vehicles utilizing the single-track model
from [2] along with parameters derived from the physical
F1Tenth platform. The VESC and LiDAR for each vehicle
are directly simulated within the simulator, and although the
LiDAR can be utilized to provide vehicle localization (e.g.,
the particle filter in [61]), the simulator broadcasts the ground truth odometry for each vehicle.
Implementation. We simulate a multi-agent race on the NVIDIA® Jetson Xavier NX, where
an ego-vehicle (i.e., the vehicle operating MMPRV) races against an opponent vehicle. The
ego-vehicle monitors the following safety specification utilizing MMPRV:

φ=a0 U[0,15] P0.98(a1∨a2) (6)
where a0,a1,a2∈AP defined in Table 2 such that vego is the ego-vehicle’s velocity, and xego,
yego, xopp, and yopp are the x- and y-coordinates of the ego-vehicle and opponent vehicle,
respectively. The specification φ aims to ensure that “the ego-vehicle decelerates for the next
15 time steps until the probability that either the ego-vehicle comes to a complete stop or the
vehicles being greater than 0.58 meters apart is greater than or equal to 98%”, where 0.58
meters is the F1Tenth platform’s length. Note that φ is reevaluated for each time index, creating
an implicit global operator □[0,M]φ (i.e.,M is the end of mission-time).

Table 2. Atomic Propositions in Equation 6
Atomic Atomic Proposition English Translation
a0 vego[i]−vego[i−1]<0.0 Ego-vehicle is decelerating
a1 vego==0.0 Ego-vehicle is stopped
a2

√
(xego−xopp)2+(yego−yopp)2>0.58 Ego-vehicle and opponent do not collide

The ego-vehicle utilizes a Model Predictive Control (MPC) controller to minimize its deviation
from the reference trajectory (i.e., the track centerline). The overall goal of MPC is to minimize
a cost function while also following a series of given constraints (e.g., physical dynamics and
limitations of a system) [54]; therefore, the ego-vehicle’s objective cost function is as follows 4:

min
X,U

N−1∑
k=0

(
(Xk−Xref,k)TQ(Xk−Xref,k)+UTkRUk

)
+(XN−Xref,N)TQ(XN−Xref,N)

(7)such that: X0=current state and Xk+1=AXk+BUk+C ∀k∈0,1,2,...,N

0.5
m

s
≤Vk≤5.0

m

s
and −25◦≤δk≤25◦ ∀k∈0,1,2,...,N

whereN is the prediction horizon, XTk =[xk,yk,ψk]
T , UTk =[Vk,δk]

T , Xref,k is the reference
trajectory, x and y are the x- and y-coordinates of the center of gravity of the vehicle in the
global frame, ψ is the angle of the vehicle relative to the x-axis, V is the velocity, δ is the
steering angle, Q is a positive semi-definite weight matrix of size 3x3, and R is a positive

4 Additional details available at https://temporallogic.org/research/MMPRV/MPC.pdf

https://temporallogic.org/research/MMPRV/MPC.pdf
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definite weight matrix of size 2x2. To define A, B, and C, the kinematic bicycle model derived
from [48] is discretized and linearized around a reference point to the following form:xk+1

yk+1

ψk+1

=

1 0 −Vrefsin(ψref+βref)dt
0 1 Vrefcos(ψref+βref)dt
0 0 1

xkyk
ψk

+
 cos(ψref+βref)dt 0
sin(ψref+βref)dt 0
cos(βref)
ℓf+ℓr

tan(δref)dt
Vrefcos(βref)

(ℓf+ℓr)cos2(δref)
dt

[Vk
δk

]
+

 Vrefψrefsin(ψref+βref)dt
−Vrefψrefcos(ψref+βref)dt

−Vrefδrefcos(βref)
(ℓf+ℓr)cos2(δref)

dt

 (8)

where β is the slip angle and ℓf and ℓr are the distances from the center of gravity to the front
and rear axles. The ego-vehicle utilizes the operator splitting quadratic program (OSQP) [56]
to solve the cost function (Equation 7), and the output is a sequence of states (Xk) and inputs
(Uk) for the nextN time steps that minimize the cost function. Only the first inputs are applied
to the ego-vehicle as MPC is recalculated for each timestamp (i.e., receding horizon control),
but these predicted inputs and states are utilized as the predicted velocity and trajectory for the
ego-vehicle (similar to [65]).

The opponent vehicle utilizes Rapidly exploring Random Trees (RRT∗) to select the path
that avoids obstacles and maximizes the progress along the centerline [32] and the pure pursuit
algorithm to follow this path [18]. The opponent vehicle’s current position is broadcast to the
ego-vehicle, but the ego-vehicle is unaware of the opponent vehicle’s control strategy. As a
result, the ego-vehicle utilizes a naı̈ve approach where kopp possible future trajectories of the
opponent’s vehicle are generated based on random behavior modes [11] produced by Monte
Carlo (MC) random sampling [25] over the model’s input space in Equation 8.

To determine the verdict of a2∈AP in Equation 6, the single predicted trajectory of the
ego-vehicle’s MPC controller and the kopp predicted opponent vehicle trajectories produce
1 ∗ kopp signal tuples (vego, xego, yego, xopp, yopp) for each predicted time step. R2U2’s
booleanizer [29] produces boolean atomics from these signal values to populateK=1∗kopp

Fig. 5. 90% tail latency for varying values of
K andN .

finite traces with prediction until the verdict of φ is
determinable. Note that equal likelihood is assumed
for this approach; therefore, the probability space
(Ωi,Fi,Pi) is defined according to Definition 12
such that ∀j∈ [0,K−1] Pi({a∈ π̂j(i)})= 1

K and
Pi({a /∈ π̂j(i)})=0.

Real-Time Feasibility. To evaluate the real-time fea-
sibility of our implementation, we record the 90% tail
latency over 10,000 time steps (i.e., 90% of reported
latencies are less than or equal to the given latency)
of the MPC controller, MC multimodal predictor, and
R2U2 (i.e., the latency of MMPRV not including the
prediction time) for varying values ofK andN ; the
latency increases linearly with increasing values of
K andN as one would intuitively expect as shown
in Figure 5. The F1Tenth vehicle has an update rate
of 20 Hz; therefore, we assume the ego-vehicle’s con-
trol loop must also operate at 20 Hz (i.e., every 50
milliseconds) as shown by the dashed line in Figure
5. Even though we only consider MMPRV and the
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associated predictors in our latency analysis, it’s important to note that the control loop includes
other processes such as sensor processing and localization. Furthermore, although the latencies
of the model predictors are specific to our implementation, MMPRV allows for any user-defined
model predictor to be utilized with any values ofK andN . While the chosen model predictor(s)
must be feasible in real-time, R2U2 must also be able to run in real-time to produce verdicts
without delay. Generally, with low values ofK andN , R2U2 performs relatively quickly (e.g.,
ifK=36 andN=max(Hp)=30, R2U2 has a 90% tail latency of 0.759 milliseconds).
MMPRV Results. For simplicity, we will assume that when the ego-vehicle detects violations of
φ (Equation 6), the chosen mitigation action is to apply the brakes where a deadline d=−15 is
required. Figure 6a displays the evaluation of π,i,−15 |=φ for time index i reported by MMPRV
at timestamp tR. Note that for every timestamp tR, the verdict of π,i,−15 |=φ is reported
fifteen time steps before i such that i= tR−d= tR−(−15). For example, when tR=148,
the verdict was reported for i=163 such that 163=148−(−15). Figures 6b, 6c, 6d, and 6e
display trajectory predictions with aN=max(Hp)=φ.wpd−d=15−(−15)=30 that were
utilized to populateK=216 finite traces with prediction for evaluation of π,i,−15 |=φ. Note,
thatK=216 andN=30 meets the real-time requirement according to Figure 5.

(a) Results for π,i,−15 |=a0 U[0,15] P0.98(a1∨a2)

(b) tR=130 (c) tR=150 (d) tR=170 (e) tR=200

Fig. 6. MMPRV results. (a) displays the verdicts for time index i returned at timestamp tR. (b), (c), (d), and
(e) show the trajectory predictions for the ego-vehicle (blue) and opponent vehicle (orange) withN=30.

4.2 Argoverse Autonomous Driving Table 3. Accuracy on Argoverse test set [14] (k=6)
Model minADE minFDE MR

LaneGCN[37] 0.870 1.362 16.2%
LAformer[40] 0.772 1.163 12.5%

mmTransformer[41] 0.844 1.338 15.4%
Lane Transformer [62] 0.866 1.316 15.2%

HiVT-64[67] 0.807 1.243 14.0%
HiVT-128[67] 0.774 1.169 12.7%

SOTA Multimodal Models. The Argov-
erse motion forecasting dataset [14] contains
323,557 traffic scenarios captured in Miami
and Pittsburgh. Each scenario captures five
seconds at 10 Hz such that each model is
expected to predict the future three seconds
(i.e.,N=30) given the past two seconds of
observed trajectories. We examine six SOTA open-source deep neural network (DNN) multi-
modal predictors trained and evaluated on the Argoverse dataset: LaneGCN [37], LAformer
[40], mmTransformer [41], Lane Transformer [62], HiVT-64 [67], and HiVT-128 [67]. Each of
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these DNNs produces k=6 multimodal predictions for each vehicle in the traffic scene, and
Table 3 displays the accuracy of these predictions based on standard metrics. The minimum
Average Displacement Error (minADE) and minimum Final Displacement Error (minFDE)
are the average and endpoint L2 distance errors, respectively, between the best-predicted and
ground truth trajectories, and the Miss Rate (MR) is the percentage where none of the predicted
trajectories have an endpoint L2 distance error within two meters from the ground truth.
Real-Time Feasibility. Deep learning models are known to have large variations in latency
based on several factors such as input/output data, model architecture, hardware platform, etc.
[39]; therefore, we deploy all six models on four different hardware platforms: a laptop with a
2.8 GHz Quad-Core Intel® Core i7 CPU (Laptop CPU), the NVIDIA® Jetson Xavier NX with
its GPU enabled (Jetson GPU), a desktop with a 3.00 GHz 8-core Intel® Xeon® Gold 6354
CPU (Desktop CPU), and that same desktop with the NVIDIA® A40 GPU enabled (Desktop
GPU). To simulate predicting the multimodal trajectories of 16 vehicles in a given city traffic
scene, each of these models (except HiVT-64 and HiVT-128) are run with a batch size of 16.
HiVT-64 and HiVT-128 uniquely compute the multimodal predictions for all agents in a given
traffic scene within a single forward pass; therefore, they are run with a batch size of one to
provide an accurate comparison. The latencies of these models are captured utilizing the official
open-source implementations, and the standard 90% tail latency [49] is reported in Figure 7.

Fig. 7. 90% tail latency of SOTA models on the Argoverse validation set [14] (k=6)
Since the Argoverse dataset was captured at 10 Hz, we assume the control loop must also

operate at 10 Hz (i.e., every 100 milliseconds) as indicated by the dashed line in Figure 7. While
we only analyze the latency of the multimodal predictor, the control loop also includes tasks such
as localization, object detection, lane detection, planning, etc. [39]. Consequently, these SOTA
multimodal predictors must operate with a latency much less than 100 milliseconds to allow
these other tasks enough time to execute; therefore, according to Figure 7, there are only a few
cases that meet this real-time requirement. When these SOTA DNNs target the NVIDIA® Jetson
Xavier NX, they all fall short of this real-time requirement; instead, these models generally
require the computing capabilities of the Desktop GPU to be feasible in real-time.

To compare our physics-based predictor in Section 4.1 and the SOTA DNNs, we reran the
DNNs on the NVIDIA® Jetson Xavier NX to simulate predicting the multimodal trajectories of a
single opponent vehicle (i.e., batch size of one), and mmTransformer had the lowest latency with
37.8 milliseconds. Therefore, in order to achieve SOTA accuracy, we must experience a 55x
slowdown from our Monte Carlo approach (i.e., Figure 5:K=6, N=30 7→0.69 milliseconds).
MMPRV Results. MMPRV determines the verdict of the following safety specification by
deadline d=0 (withmax(Hp)=30):

φ=P0.90(□[0,30]a), where a=
√
(x1−x2)2+(y1−y2)2>1.7
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where a is an atomic proposition and x1, y1, x2, and y2 are the x- and y-coordinates of Vehicle
1 and Vehicle 2, respectively. The specification φ aims to ensure that “the probability of the
distance between two vehicles being greater than 1.7 meters for the next 30 time steps (i.e., next
3 seconds) is greater than or equal to 90%”, where 1.7 meters is the average width of a vehicle.

Fig. 8. Multimodal trajectory prediction for
Vehicle 1 and 2. sj is the trajectory produced
by the jth multimodal prediction.

The mmTransformer is utilized to predict kveh1=
6 and kveh2 = 6 multimodal trajectories for two
nearby vehicles labeled Vehicle 1 and Vehicle 2,
respectively. This produces kveh1∗kveh2=36 sig-
nal tuples (x1,y1,x2,y2) which are input as raw
float values into R2U2’s booleanizer [29] to populate
K = 36 finite traces with prediction. Each multi-
modal trajectory produced by mmTransformer also
has an associated probability; therefore, the probabil-
ity space (Ωi,Fi,Pi) is defined according to Defini-
tion 12 such that ∀j∈ [0,K−1] Pi({a∈ π̂j(i)})=
Pr(x1,y1) ∗Pr(x2,y2) and Pi({a /∈ π̂j(i)}) = 0
where Pr(x1,y1) and Pr(x2,y2) are the probabili-
ties of (x1,y1) and (x2,y2) being the ground truth.

Figure 8 illustrates an interaction between Vehicle
1 and 2 at an intersection that results in π,i,d |̸=φ.
According to the predictions of mmTransformer, Vehicle 1 might make a left turn (with
Pr(x1,y1)=0.9687) that will result in a collision with Vehicle 2 whose predicted trajectories
are straight. Note that the verdict is still a predicted result that is only as accurate as the prediction.

5 Conclusion and Future Work
MMPRV allows for any user-defined model predictor, including both unimodal and multimodal
model predictors, while guaranteeing a verdict for a given PMLTL specification by a given
deadline. The additional support of multimodal prediction allows for applicability to complex
systems where multiple future behavior modes are plausible. As shown through our case studies,
SOTA DNN multimodal predictors struggle to meet real-time requirements, especially when
targeting embedded computing platforms. This motivates future work to continue investigating
computationally lighter methods (e.g., Interacting Multiple Model Kalman Filters [31] or
maneuver-based recurrent neural networks [21]) and investigate potential avenues for acceler-
ation of these SOTA DNNs through techniques such as pruning or precision reduction [57].
Additionally, while we primarily focused on quantifying probabilistic multimodal predictions,
future work includes quantifying distributed signal values within PMLTL specifications through
techniques such as chance constraints [28,34,36] and conformal prediction [38].
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