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1 Model Predictive Control

Model Predictive Control (MPC) predicts future states of a system using a given model
and a given prediction horizon and minimizes a optimization function as to decrease
the error in the future. MPC is superior to other control methods (e.g., PID and LQR)
in that it can handle multiple-input multiple-output systems while also considering the
system model and a set of given constraints. There are many different implementations
of MPC; see [1, 2] for a list of different MPC approaches. We will implement a linear
MPC solved through quadratic programming.

1.1 F1Tenth Vehicle Model

Fig. 1. F1Tenth Model.

A kinematic model is a simple model, while a dy-
namic model is a more complex model that con-
siders how forces affect motion (e.g., forces on the
tires). While a kinematic model is only accurate at
small velocities (e.g., less than 1

2
m
s ), a kinematic

model allows for higher computational through-
put compared to a dynamic model, but when ex-
periencing higher velocities the kinematic model
introduces high degrees of uncertainty. Although
the kinematic model suffers from inaccuracies at
large velocities (e.g., greater than 1

2
m
s ), a kine-

matic model is sufficient for our MPC problem
since MPC is recalculated at each timestamp.

Kinematic Non-linear Model. The F1Tenth autonomous racing vehicle is modeled
with a kinematic bicycle model for lateral motion modified from [3] as follows:

ẋ = V cos(ψ + β)

ẏ = V sin(ψ + β)

ψ̇ =
V cos(β)

ℓf + ℓr
tan(δ)

β = tan−1(
ℓrtan(δ)

ℓf + ℓr
)
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where x and y are the x- and y-coordinates of the center of gravity of the vehicle in the
global frame, ψ is the angle of the vehicle relative to the x-axis, V is the velocity of the
vehicle, β is the slip angle, ℓf and ℓr are the distances from the center of mass to the
front and rear wheels, and δ is the steering angle (Figure 1).

Discrete Model. We discretized the nonlinear system as follows using Euler’s forward
method:

xk+1 = xk + ẋ ∗ dt = xk + V cos(ψ + β) ∗ dt
yk+1 = yk + ẏ ∗ dt = yk + V sin(ψ + β) ∗ dt

ψk+1 = ψk + ψ̇ ∗ dt = ψk +
V cos(β)

ℓf + ℓr
tan(δ) ∗ dt

Linear Model. A linearized discrete-state model is given in the following form:

Xk+1 = AXk + BUk + C

where

XT
k = [xk, yk, ψk]

T

UT
k = [Vk, δk]

T

Using the discretized model, we can now linearize the nonlinear model by perform-
ing Taylors’ Series expansion around a reference point. We define the reference and
equilibrium points as follows:

Xref = Xe = [xref , yref , ψref ]
T

Uref = [Vref , δref ]
T

Ue = [0, δref ]
T

The Taylors’ Series expansion is evaluated as follows:

xk+1 = xk +

[
∂

∂ψ
X=Xref

U=Uref

V cos(ψ + β) ∗ dt

]
(ψk − ψref )+[

∂

∂V
X=Xref

U=Uref

V cos(ψ + β) ∗ dt

]
(Vk − 0)

yk+1 = yk +

[
∂

∂ψ
X=Xref

U=Uref

V sin(ψ + β) ∗ dt

]
(ψk − ψref )+[

∂

∂V
X=Xref

U=Uref

V sin(ψ + β) ∗ dt

]
(Vk − 0)
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ψk+1 = ψk +

[
∂

∂V
X=Xref

U=Uref

V cos(β)

ℓf + ℓr
tan(δ) ∗ dt

]
(Vk − 0)+[

∂

∂δ
X=Xref

U=Uref

V cos(β)

ℓf + ℓr
tan(δ) ∗ dt

]
(δk − δref )

The final linear model is as follows:xk+1

yk+1

ψk+1

 =

1 0 −Vrefsin(ψref + βref )dt
0 1 Vrefcos(ψref + βref )dt
0 0 1

xkyk
ψk

+

 cos(ψref + βref )dt 0
sin(ψref + βref )dt 0
cos(βref )
ℓf+ℓr

tan(δref )dt
Vref cos(βref )

(ℓf+ℓr)cos2(δref )
dt

[
Vk
δk

]
+

 Vrefψrefsin(ψref + βref )dt
−Vrefψrefcos(ψref + βref )dt

−Vrefδref cos(βref )
(ℓf+ℓr)cos2(δref )

dt


1.2 Optimization Problem.

Our goal with MPC is to minimize the deviation from the reference trajectory (i.e., the
track centerline) while satisfying all constraints. Therefore, our objective cost function
is given as follows:

min
X,U

N−1∑
k=0

{(Xk − Xref,k)
T Q(Xk − Xref,k) + UT

k RUk}+

(XN − Xref,N )T Q(XN − Xref,N )

such that: X0 = current state
Xk+1 = AkXk + BkUk + C ∀k ∈ 0, 1, 2, . . . , N

0.5
m

s
≤ Vk ≤ 5.0

m

s
∀k ∈ 0, 1, 2, . . . , N

− 25◦ ≤ δk ≤ 25◦ ∀k ∈ 0, 1, 2, . . . , N

where N is the prediction horizon, XT
k = [xk, yk, ψk]

T , UT
k = [Vk, δk]

T , Xref,k is the
reference trajectory, x and y are the x- and y-coordinates of the center of gravity of the
vehicle in the global frame, ψ is the angle of the vehicle relative to the x-axis, V is
the velocity of the vehicle, δ is the steering angle, Q is a positive semi-definite weight
matrices of size 3x3, and R is a positive definite weight matrix of size 2x2, and Ak,
Bk, and C are the model parameter matrices defined above. Additionally, we define the
reference point as the current point, which is sufficient for our implementation. Our Q
and R weight matrixes are given as follows:

Q =

5.0 0.0 0.0
0.0 5.0 0.0
0.0 0.0 0.5


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R =

[
10 0.0
0.0 0.1

]

1.3 Quadratic Programming.

We will use Operator Splitting Quadratic Program (OSQP) to solve for our optimization
function [4]. The OSQP solver solves a quadratic programming (QP) in the following
form:

min
1

2
zTHz + gT z

such that: lb ≤ Acz ≤ ub

where z is a nx1 matrix,H is a nxnmatrix, g is a nx1 matrix, andAc is amxnmatrix.
We can rewrite our cost function in Section 1.2 to fit within the OSQP form as

follows:
z = [X0,X1, . . . ,XN ,U0,U1, . . . ,UN−1]

H = diag(Q,Q,Q, . . . ,Q,R,R, . . . ,R)

where Q is repeated N times and and R is repeated N − 1 times.

g = [−QXref,0,−QXref,1, . . . ,−QXref,N−1,−QXref,N , 0, 0, . . . , 0]
T

where 0 is repeated N − 1 times.

lb = [−x,−C, . . . ,−C,Umin, . . . ,Umin]
T

where C and Umin are repeated N − 1 times where C is a model parameter matrix
(defined above) and Umin = [Vmin, δmin]

T = [0.5m
s ,−25◦]T .

ub = [−x,−C, . . . ,−C,Umax, . . . ,Umax]
T

where C and Umin are repeated N − 1 times where C is a model parameter matrix
(defined above) and Umax = [Vmax, δmax]

T = [5.0m
s , 25

◦]T .

Ac =



−I 0 0 . . . 0 0 0 . . . 0
A −I 0 . . . 0 B 0 . . . 0
0 A −I . . . 0 0 B . . . 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 . . . −I 0 0 . . . 0
0 0 0 . . . 0 I 0 . . . 0
0 0 0 . . . 0 0 I . . . 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 . . . 0 0 0 . . . I


whereA andB are model parameter matrices (defined above) and I is an identity matrix
of size 3x3.
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