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Abstract. Stream-based runtime monitors can effectively verify specified system be-
havior in a real-time online manner, but the effectiveness of these monitors relies heavily
on complying with the system’s timing and resource constraints and the correctness
of the monitor’s implementation. The R2U2 runtime monitoring framework provides
real-time guarantees and a resource-aware architecture; however, we further reduce
R2U2’s overhead by optimizing both Mission-time Linear Temporal Logic (MLTL) and
past-time MLTL (ptMLTL) operators and their corresponding instruction formats. We
evaluate our optimizations on a suite of benchmarks and observe a significant decrease
in latency and memory requirements. To improve the correctness guarantees of R2U2,
we manually transpile the previous C version to safe embedded Rust and verify the
correctness with hand-constructed proofs, testing, and code verification with Verus. We
specifically target safe embedded Rust (i.e., no std) to allow for deployment on embedded
platforms with bare-metal environments (e.g., microcontrollers), and we provide complete
proofs for all of R2U2’s operators and verify the Rust code implementation of 25 of
these operators with Verus code contracts.
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1 Introduction
Stream-based runtime monitors analyze an input stream of system data against a set of system
requirements and produce an output stream of corresponding verdicts. These monitors enable the
detection of requirement violations in a real-time online manner, enabling appropriate mitigation
actions to be taken [8,22]. When online runtime monitors are executing onboard an existing sys-
tem, they must fit within the system’s timing and resource constraints to produce verdicts in real
time. The integration of runtime monitors also raises the question, “How can we trust that the run-
time monitor is correct?” as incorrect violation detections can negatively impact a system [9,23].

The R2U2 (Realizable, Responsive, Unobtrusive Unit) stream-based monitoring frame-
work is known for its real-time guarantees and resource-aware architecture [26,29,42,45],
and the success of R2U2 has been exemplified by its deployment on several mission-critical,
resource-constrained, real-time systems [5,13,15,24,25,29,44]. R2U2 supports both past-time
and future-time monitoring, but most of R2U2’s recent optimizations have only been applied to
R2U2’s future-time monitoring capabilities (e.g., [26,29,42]). R2U2 natively encodes Mission-
time Linear Temporal Logic (MLTL) as its future-time logic but encoded ptMTL [2,32], instead
of ptMLTL, as its past-time logic. To aid in consistency and decrease the resource overhead
of R2U2’s past-time monitoring, we formally define ptMLTL and encode ptMLTL operators
similar to R2U2’s latest future-time optimizations in [29]. Furthermore, we decrease R2U2’s
resource overhead by optimizing which MLTL and ptMLTL operators are directly encoded
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in R2U2 and which are encoded via their semantic equivalent, and we further reduce memory
requirements by refining the format of the instructions R2U2 reasons over.

R2U2’s software implementation was previously only written in C. Given that both C and
C++ are unsafe languages that contain several memory safety vulnerabilities (e.g., [18,35,50]),
R2U2’s C implementation is susceptible to memory safety issues, e.g., reading or writing beyond
array bounds. Embedded Rust has become a popular alternative to C to eradicate such issues
with C code [39,47,48]. Therefore, to avoid the memory safety vulnerabilities that exist in
R2U2’s C implementation, we manually transpile from C to safe embedded Rust.

To the best of our knowledge, RTLola [11,21] and TeSSLa [28] are the only other runtime
verification frameworks that support a Rust implementation, but both of these tools only compile
to Rust code that utilizes the Rust standard library (i.e., std). Rust’s standard library requires
an operating system, which isn’t feasible on embedded systems with bare-metal environments
as required by some applications [5,19,24]; therefore, we specifically target embedded Rust
with no std, which allows for systems with or without an operating system to utilize R2U2 [1].

To verify monitor correctness, the VeriMon [9,10,43] and Vydra [40] monitors were formal-
ized and verified in Isabelle/HOL and are executable using Isabelle-generated OCaml code. In
[12] and [14], executable OCaml code was extracted from a runtime monitor specified in Coq.
While utilizing proof assistants to produce verified monitors ensures correctness, these techniques
automatically generate code in languages not typically utilized for real deployment (e.g., OCaml,
Scala, Haskell) and may lack in optimizations that a human programmer would implement.
On the other hand, the developers of Copilot recently introduced the CopilotVerifier, which
generates What4 SMT queries to provide a mathematical proof verifying that the original Copilot
specification and the compiled C monitor are bisimilar [46]. Additionally, Lola specifications can
be generated into imperative Rust code and verified with generated Prusti code contracts in [21].
Both Copilot and Lola compile specification(s) into a monitor in an imperative language (i.e., C or
Rust) such that these techniques require verification of any newly compiled monitor, which can be
costly as in [21]. R2U2 differs in that it is a static monitor that can interpret any MLTL/ptMLTL
specification(s) at runtime, which makes it “more challenging” and “problematic” to verify [21].

To verify the correctness of R2U2’s implementation, we construct complete proofs for all of
R2U2’s directly encoded operators. Through hand-constructing these proofs, we found several
errors in the previous implementation of R2U2, which have now been corrected. To verify
the correctness of the Rust code implementation, we verify that the Rust code matches all
conditions in the proof using deductive code verification. We examined utilizing Creusot [17],
Prusti [3,4], and Verus [33,34] for verifying R2U2’s code and decided upon utilizing Verus due
to its applicability and usability in verifying R2U2’s implementation.

Our contributions include (1) syntax, semantics, and propagation delay semantics of ptMLTL
(Section 2), (2) new encoding of ptMLTL operators (Section 3.3), (3) complete proofs for all
of R2U2’s directly encoded operators (Section 3.2 and 3.3) (4) new implementation of R2U2 in
safe embedded Rust as a publicly available crate, 1 (5) significant latency and memory reductions
of R2U2 (Section 3, 3.4, and 3.5), and (6) deductive code verification with Verus (Section 4).

2 R2U2 Overview
2.1 Mission-Time Linear Temporal Logic (MLTL) [36,42]
MLTL (or ptMLTL) is a variant of LTL (or ptLTL) over finite traces with temporal intervals
that are bounded, closed, and discrete. MLTL and ptMLTL express the most commonly utilized
future and past-time fragments of MTL [2,32] and STL [37].

1 https://crates.io/crates/r2u2 core

https://crates.io/crates/r2u2_core
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Definition 1. (MLTL Syntax) The syntax of an MLTL formula φ over a set of atomic proposi-
tions AP is recursively defined as:

φ ::=true | false | p | ¬ψ | ψ∧ξ | ψ∨ξ |2Iψ |3Iψ | ψ UI ξ | ψ RI ξ
where p∈AP is an atom, ψ and ξ are MLTL formulas, and I is a closed interval [lb,ub] where
lb and ub denote the lower and upper bound, respectively, such that lb≤ub and lb,ub∈N0.

Definition 2. (ptMLTL Syntax) The syntax of a ptMLTL formula φ over a set of atomic
propositions AP is recursively defined as:

φ ::=true | false | p | ¬ψ | ψ∧ξ | ψ∨ξ | I ψ | I ψ | ψ SI ξ | ψ TI ξ
where p∈AP is an atom,ψ and ξ are ptMLTL formulas, and I is a closed interval [lb,ub] where
lb and ub denote the lower and upper bound, respectively, such that lb≤ub and lb,ub∈N0.
Definition 3. (Finite Trace) A finite trace, denoted by π, is a finite sequence of sets of atomic
propositions. The ith set is denoted by π(i) and contains the atomic propositions that are
satisfied at the ith time step. |π| denotes the length of π (where |π|<∞), and π[lb,ub] denotes
the trace segment π(lb),π(lb+1),...,π(ub).
Definition 4. (MLTL Semantics) We recursively define π,i |=φ (finite trace π starting from
time index i≥0 satisfies, or “models” MLTL formula φ) as
• π,i |=true
• π,i |=p for p∈AP iff p∈π(i)
• π,i |=¬ψ iff π,i |̸=ψ
• π,i |=ψ ∧ ξ iff π,i |=ψ and π,i |=ξ
• π,i |=ψ ∨ ξ iff π,i |=ψ or π,i |=ξ
• π,i |=2[lb,ub]ψ iff |π|≤i+lb 2 or ∀j∈ [i+lb,i+ub], π,j |=ψ
• π,i |=3[lb,ub]ψ iff |π|>i+lb 2 and ∃j∈ [i+lb,i+ub] such that π,j |=ψ
• π,i |=ψ U[lb,ub] ξ iff |π|>i+lb 2 and ∃j∈ [i+lb,i+ub] such that π,j |= ξ and ∀k<j

where k∈ [i+lb,i+ub], π,k |=ψ
• π,i |=ψ R[lb,ub] ξ iff |π|≤ i+lb 2 or if ∃j ∈ [i+lb,i+ub] where π,j |̸= ξ, then ∃k<j

where k∈ [i+lb,i+ub] such that π,k |=ψ
Given two MLTL formulas ψ and ξ, they are semantically equivalent (denoted by ψ≡ξ) if
and only if π |=ψ⇔π |=ξ for all traces π. MLTL also keeps the standard operator equivalences
from LTL, including false≡¬true, ψ ∨ ξ≡¬(¬ψ ∧ ¬ξ), ψ→ξ≡¬ψ∨ξ, ψ↔ξ≡¬(ψ⊕ξ),
¬(ψ UI ξ)≡ (¬ψ RI ¬ξ), ¬3Iψ≡2I¬ψ, 3Iψ≡ (true UI ψ), and 2Iψ≡ (falseRI ψ).
Notably, MLTL discards the next ( ) operator since ψ≡2[1,1]ψ.

Axiom 1. (Early Evaluation of Until Operator) Following directly from Definition 4, the MLTL
formula ψ U[lb,ub] ξ can be evaluated based on ξ alone in two cases: (1) if π,i+lb |=ξ, then
π,i |=ψ U[lb,ub] ξ and (2) if ∄j ∈ [i+ lb,i+ub] such that π,j |= ξ, then π,i |̸=ψ U[lb,ub] ξ.
Additionally, if ∃j ∈ [i+ lb,i+ ub] such that π,j |= ξ, then ∀m ≥ j and ∀n > j where
m,n∈ [i+lb,i+ub], it is not necessary to know if π,m |=ψ and if π,n |= ξ to determine if
π,i |=ψ U[lb,ub] ξ.

Axiom 2. (Early Evaluation of Release Operator) Following directly from Definition 4, the
MLTL formula ψR[lb,ub]ξ can be evaluated based on ξ alone in two cases: (1) if π,i+lb |̸=ξ,
then π,i |̸= ψ R[lb,ub] ξ and (2) if ∀j ∈ [i+ lb,i+ub], π,j |= ξ, then π,i |= ψ R[lb,ub] ξ.
Additionally, if ∃j ∈ [i+ lb,i+ub] such that π,j |= ψ and π,j |= ξ, then ∀m> j where
m∈ [i+ lb,i+ub], it is not necessary to know if π,m |=ψ and if π,m |= ξ to determine if
π,i |=ψ R[lb,ub] ξ.

2 In stream-based monitoring, we always assume that there will be an extension of the trace π.
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Definition 5. (ptMLTL Semantics) We recursively define π,i |=φ (finite trace π starting from
time index i≥0 satisfies, or “models” ptMLTL formula φ) as
• π,i |=true
• π,i |=p for p∈AP iff p∈π(i)
• π,i |=¬ψ iff π,i |̸=ψ
• π,i |=ψ ∧ ξ iff π,i |=ψ and π,i |=ξ
• π,i |=ψ ∨ ξ iff π,i |=ψ or π,i |=ξ
• π,i |= [lb,ub]ψ iff |π|≤i−ub 2 or ∀j∈ [i−ub,i−lb], π,j |=ψ
• π,i |= [lb,ub]ψ iff |π|>i−ub 2 and ∃j∈ [i−ub,i−lb] such that π,j |=ψ
• π,i |=ψ S[lb,ub] ξ iff |π|>i−ub 2 and ∃j∈ [i−ub,i−lb] such that π,j |=ξ and ∀k>j

where k∈ [i−ub,i−lb], π,k |=ψ
• π,i |=ψ T[lb,ub] ξ iff |π|≤ i−ub 2 or if ∃j ∈ [i−ub,i−lb] where π,j |̸= ξ, then ∃k>j

where k∈ [i−ub,i−lb] such that π,k |=ψ
Given two ptMLTL formulas ψ and ξ, they are semantically equivalent (denoted by ψ≡ ξ)
if and only if π |= ψ⇔ π |= ξ for all traces π. ptMLTL also keeps the standard operator
equivalences from ptLTL, including false≡¬true, ψ ∨ ξ≡¬(¬ψ ∧ ¬ξ), ψ→ξ≡¬ψ∨ξ,
ψ↔ ξ≡¬(ψ⊕ξ), ¬ Iψ≡ I¬ψ, ψ≡ (true SI ψ), and ψ≡ (false TI ψ). Notably,
ptMLTL discards the previous ( ) operator since ψ≡ [1,1]ψ.

Axiom 3. (Early Evaluation of Since Operator) Following directly from Definition 5, the
ptMLTL formula ψ S[lb,ub] ξ can be evaluated based on ξ alone in two cases: (1) if π,i−lb |=ξ,
then π,i |=ψ S[lb,ub] ξ (2) if ∄j ∈ [i−ub,i− lb] such that π,j |= ξ, then π,i |̸=ψ S[lb,ub] ξ.
Additionally, if ∃j ∈ [i−ub,i− lb] such that π,j |= ξ and ∀k > j where k ∈ [i−ub,i− lb],
π,k |=ψ, then it is not necessary to know if π,k |=ξ to determine π,i |=ψ S[lb,ub] ξ.

Axiom 4. (Early Evaluation of Trigger Operator) Following directly from Definition 5, the
ptMLTL formula ψ T[lb,ub] ξ can be evaluated based on ξ alone in two cases: (1) if π,i−lb |̸=ξ,
then π,i |̸=ψ T[lb,ub] ξ (2) if ∀j∈ [i−ub,i−lb], π,j |=ξ, then π,i |=ψ T[lb,ub] ξ. Additionally, if
∃j∈ [i−ub,i−lb] such that π,j |=ψ and π,j |=ξ and ∀k>j where k∈ [i−ub,i−lb], π,k |=ξ,
then it is not necessary to know if π,k |=ψ to determine π,i |=ψ T[lb,ub] ξ.

2.2 Abstract Syntax Tree Architecture

Fig. 1. AST for (2[0,3]ψ)U[2,4] ξ

R2U2 is a stream-based runtime monitor that reevaluates
MLTL and ptMLTL formulas for each time index i. The
Configuration Compiler for Property Organization (C2PO)
[26] compiles MLTL and ptMLTL formula(s) for input into
R2U2. C2PO decomposes the MLTL and ptMLTL formula(s)
into subformula nodes represented in an Abstract Syntax Tree
(AST) and optimizes the AST by applying Common Subex-
pression Elimination [26,29] and various rewriting rules [27].
C2PO then outputs assembly-style instructions for R2U2 to
reason over. Figures 1 and 2 illustrate an AST and the compiled
instructions for (2[0,3]ψ) U[2,4] ξ, respectively.

In the outputted assembly, there are configuration instructions and computation instructions.
The configuration instructions are run once upon initialization to configure the AST in terms of
sizing and metadata (e.g., the lower and upper bounds of temporal operators). The computation
instructions are saved in a table and sequentially iterated over at each timestamp. The computation
instructions are ordered such that R2U2 reasons over the AST by determining the evaluation of
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Fig. 2. Instructions compiled by C2PO for
(2[0,3]ψ) U[2,4] ξ. Instructions 0–3 are the com-
putation instructions, and instructions 4–9 are
the configuration instructions.

each subformula node from the bottom-up and
propagating verdicts to the parent node(s).

Each node of the AST computes and stores
verdict-timestamp tuples Tφ=(v,τ) for its sub-
formula φ, where v ∈ {true,false} and τ ∈N0.
Each node stores the verdict-timestamp tuples in a
shared connection queue (SCQ), where the SCQ is
a circular buffer that overwrites verdict-timestamp
tuples in a circular and aggregated manner.

Propogation Delay. To compute the SCQ size of
each node in the AST, the propagation delay of
each subformula must first be computed.

Definition 6. (Propagation Delay [29]) The propagation delay of an MLTL/ptMLTL formula
φ is the time between when a set of propositions π(i) arrives and when the verdict of π,i |=φ
is determinable. The best-case propagation delay (φ.bpd) is its minimum time delay, and the
worst-case propagation delay (φ.wpd) is its maximum time delay.

Definition 7. (MLTL Propagation Delay Semantics [29]) Let ψ and ξ be subformulas of an
MLTL formula φ where φ.bpd and φ.wpd are structurally defined as follows:

• φ∈AP :

{
φ.wpd=0

φ.bpd=0
• φ=¬ψ :

{
φ.wpd=ψ.wpd

φ.bpd=ψ.bpd

• φ=ψ ∨ ξ or φ=ψ ∧ ξ :

{
φ.wpd=max(ψ.wpd, ξ.wpd)

φ.bpd=min(ψ.bpd, ξ.bpd)

• φ=2[lb,ub]ψ or φ=3[lb,ub]ψ :

{
φ.wpd=ψ.wpd+ub

φ.bpd=ψ.bpd+lb

• φ=ψ U[lb,ub] ξ or φ=ψR[lb,ub] ξ :

{
φ.wpd=max(ψ.wpd, ξ.wpd)+ub

φ.bpd=min(ψ.bpd, ξ.bpd)+lb

Definition 8. (ptMLTL Propagation Delay Semantics) Letψ and ξ be subformulas of a ptMLTL
formula φ where φ.bpd and φ.wpd are structurally defined as follows:

• φ∈AP :

{
φ.wpd=0

φ.bpd=0
• φ=¬ψ :

{
φ.wpd=ψ.wpd

φ.bpd=ψ.bpd

• φ=ψ ∨ ξ or φ=ψ ∧ ξ :

{
φ.wpd=max(ψ.wpd, ξ.wpd)

φ.bpd=min(ψ.bpd, ξ.bpd)

• φ= [lb,ub]ψ or φ= [lb,ub]ψ :

{
φ.wpd=ψ.wpd−lb
φ.bpd=ψ.bpd−ub

• φ=ψ S[lb,ub] ξ or φ=ψ T[lb,ub] ξ :

{
φ.wpd=max(ψ.wpd, ξ.wpd)−lb
φ.bpd=min(ψ.bpd, ξ.bpd)−lb3

3 φ.bpd in this case is determined by lb (not ub) as ptMLTL requires either ψ or ξ to be known at i−lb
to determine if π,i |=ψ S[lb,ub] ξ or π,i |=ψ T[lb,ub] ξ according to Axioms 3 and 4, respectively.



6 A. Aurandt et al.

SCQ Memory Size. To minimize the required memory resources of R2U2, the SCQs are
minimally sized such that the SCQ will never overwrite a verdict-timestamp tuple required by
its parent node. The minimum SCQ size of an AST node φ is determined by the worst-case
propagation delay of its sibling nodes and its own best-case propagation delay; in the worst case,
a node φmust store verdict-timestamp tuples in its SCQ until all of φ’s siblings have the same
timestamp τ for these tuples to be consumed by their parent node. Therefore, the size of node
φ’s SCQ corresponds to the maximum timestamp mismatch between node φ and φ’s siblings.
Let Sφ be the set of all of φ’s sibling nodes, then the size of φ’s SCQ is given by the following
(proof available in [51]):

SCQsize(φ)=max(max{s.wpd | s∈Sφ}−φ.bpd, 0)+1 (1)
Aggregation. A verdict-timestamp tuple Tφ=(v,τ) is stored in φ’s SCQ using aggregation
[29,42]. Aggregation occurs such that if an incoming tuple’s verdict v is equivalent to the
previous tuple’s verdict v, then the incoming tuple’s timestamp τ overwrites the previous tuple’s
timestamp τ . For example, if φ’s SCQ contains {(true,3),(false,7)}, then φ= false for the
entire timestamp interval [4,7], and if φ encounters an incoming tuple Tφ=(false,8), then φ’s
SCQ becomes {(true,3),(false,8)}. This aggregated storing of verdict-timestamp tuples allows
R2U2 to easily reason over multiple timestamps (with equivalent verdicts) at once.
Booleanizer. To produce atomics for the leaf nodes of the AST, either atomics can be loaded
directly into R2U2 or the Booleanizer [26] can be utilized. R2U2’s Booleanizer enables boolean
expressions over booleans, integers, and/or float input signals using arithmetic, bitwise, relational,
and set operators (e.g., “forexactlyn” or “foratmostn”). Similar to the MLTL/ptMLTL AST, the
Booleanizer decomposes the expression(s) into subexpression(s) represented in an AST and
produces computation instructions for R2U2 to reason over.

3 Optimized and Proved R2U2 Implementation
Previously, R2U2 directly encoded only a subset of MLTL operators: ¬ψ, ψ∧ξ, 2Iψ, and
ψ UI ξ (as shown in yellow in Fig. 3) [26,29,42]. The full MLTL semantics were encoded
by utilizing the appropriate semantic equivalents. In many cases, this required extra negation
subformulas in the AST; consequently, this required extra negation instructions for R2U2 to
reason over. For example, the encoding of the Release (R) operator required four instructions

Original Formula Previous Encoding New Encoding
Formula # of instructions Formula # of instructions

¬ψ ¬ψ 1 ¬ψ 1
ψ∧ξ ψ∧ξ 1 ψ∧ξ 1
ψ∨ξ ¬(¬ψ∧¬ξ) 4 ψ∨ξ 1
ψ→ξ ¬(ψ∧¬ξ) 3 ¬ψ∨ξ 2
ψ↔ξ ¬(ψ∧¬ξ)∧(¬(¬ψ∧ξ)) 6 ψ↔ξ 1
ψ⊕ξ ¬(¬(ψ∧¬ξ)∧(¬(¬ψ∧ξ)) 8 ¬(ψ↔ξ) 2
3I ψ true UI ψ 1 true UI ψ 1
2I ψ 2I ψ 1 falseRI ψ 1
ψUIξ ψ UI ξ 1 ψ UI ξ 1
ψRI ξ ¬(¬ψ UI ¬ξ) 4 ψRI ξ 1

I ψ I ψ 1 true SI ψ 1

I ψ I ψ 1 false TI ξ 1
ψ SI ξ ψ SI ξ 1 ψ SI ξ 1
ψ TI ξ − − ψ TI ξ 1

Fig. 3. Comparison of previous [26,29,42] and new encodings of MLTL and ptMLTL formulas in R2U2.
Both the previous and new encoding directly encode a subset of operators shown in yellow and blue,
respectively. The formulas with indirect encodings are given by semantic equivalents.
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(i.e., three extra negation instructions) since ψ RI ξ was encoded as ¬(¬ψ UI ¬ξ). This
increase in instructions negatively affects R2U2’s timing and resource requirements; R2U2 had
to reason over extra instructions, allocate additional SCQs, and store extra instructions in its
table. Therefore, we directly encode a different subset of MLTL operators: ¬ψ, ψ∧ξ, ψ∨ξ,
ψ↔ξ, ψ UI ξ, and ψ RI ξ (as shown in blue in Fig. 3). We optimized the selection of MLTL
operators with direct encodings to reduce both timing and resource requirements. As shown in
Figure 3, every MLTL/ptMLTL operator that previously required more than one instruction has
been reduced. Since R2U2 is designed to fit within tight memory-constrained systems, the size
of the extra logic also had to be considered. For example, 2Iψ is easily encoded as falseRI ψ
without additional instructions; therefore, we only directly encode the R operator to eliminate
extra redundant logic that would be required to encode both. In the rest of this section, we
provide correctness proofs for the SCQ read and write operations and all encoded MLTL and
ptMLTL temporal operators.4

3.1 Shared Connection Queues
The algorithms for the SCQ read and write operations were first presented in [29]; however,
no formal proof of correctness was provided and the algorithms contained various errors. For
example, if the read pointer and write pointer point to the same SCQ slot, the read operation
would always return an empty verdict-timestamp tuple, which is not the desired behavior (e.g., a
SCQ of size one always returned an empty tuple such that no valid tuple was ever read). Some
of the errors were fixed in future releases of R2U2, but R2U2 v3.0 [26] (i.e., the latest version of
R2U2) still contained errors such that the SCQ sizing given in Equation 1 required +3 instead of
+1 to mask the underlying problem. Therefore, we provide the SCQ read and write operations
in Algorithm 1, and the correctness of the aggregated write and aggregated read are proved in
Theorems 1 and 2, respectively. Note that the correctness of the MLTL and ptMLTL operators
depends greatly on the correctness of the SCQ operations.

Algorithm 1: Shared Connection Queue (SCQ) Operations for Node φ
1 Initialize:
2 φ.write ptr=0
3 φ.read1 ptr=0 andφ.read2 ptr=0
4 φ.SCQ[0]=Empty
5 function read(read ptr,desired time) is

Input: Read pointer: read ptr; Desired timestamp: desired time
Output: Tφ orEmpty

6 ifφ.SCQ[read ptr]=Empty and read ptr=0 then // SCQ is empty
7 returnEmpty // Return Empty, indicating there is no new Tφ in SCQ
8 do // Scan forward in SCQ
9 ifφ.SCQ[read ptr].τ >=desired time then

10 returnφ.SCQ[read ptr] // Tφ is new; therefore return Tφ
11 read ptr=(read ptr+1)%SCQsize(φ) // Step forward in SCQ
12 while read ptr≠φ.write ptr;

/* Hit write ptr while scanning forward; take a step back */
13 read ptr=(read ptr−1)%SCQsize(φ)
14 returnEmpty // Return Empty, indicating there is no new Tφ in SCQ
15 functionwrite(Tφ) is

Input: Verdict-timestamp tuple to write: Tφ
16 prev write ptr=(φ.write ptr−1)%SCQsize(φ) // Find the previous write pointer

/* Check if aggregating write */
17 if !(φ.SCQ[φ.write ptr]=Empty andφ.write ptr=0) then // SCQ is not empty

/* Previous verdict matches Tφ.v */
18 ifφ.SCQ[prev write ptr].v=φ.SCQ[φ.write ptr].v then
19 φ.write ptr=prev write ptr
20 φ.SCQ[φ.write ptr]=Tφ
21 φ.write ptr=(φ.write ptr+1)%SCQsize(φ) // Move write pointer forward

4 Proofs for the boolean connectives are available in Appendix A.
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Theorem 1 (Aggregated Write to SCQ). Given an AST subformula node φ, φ’s write
pointer φ.write ptr, and a verdict-timestamp tuple Tφ, the write function in Algorithm 1

(
i.e.,

φ.write(Tφ)
)

is guaranteed to store results in strictly increasing order using aggregation such
that φ.write ptr is always either an empty slot or the oldest entry in the SCQ.

Proof. Sequential writes to a SCQ are always in strictly increasing order in terms of Tφ.τ ;
this directly follows from the implementation of R2U2’s MLTL and ptMLTL operators (e.g.,
Algorithms 2 and 3). There are two ways that a tuple Tφ is written in φ’s SCQ:
(1) Aggregate Write: If the SCQ is not completely empty, then there was a previous write to

the SCQ. If a previous write exists (line 17), the previous slot in the SCQ is checked by
decrementing the write pointer in a circular manner on line 16 (i.e., if the write pointer is
at the first slot of the SCQ, the previous slot is the last slot of the SCQ). If the verdict is
the same in the previous slot as Tφ.v (line 18), then the write pointer is re-assigned to the
previous slot on line 19. The tuple Tφ then overwrites the previous slot on line 20.

(2) Non-aggregate Write: If there was no previous write to the SCQ (line 17) or the previous
write to the SCQ didn’t contain the same verdict as the input tuple Tφ (line 18), then the
tuple Tφ is simply written at the write pointer on line 20.

In both cases, the write pointer is then incremented in a circular manner on line 21 such that the
write pointer is set to the next slot. Since the write pointer is always incremented in a circular
manner to the slot after where the current write occurred, the value of the write ptr at the end
of execution is always either empty or the oldest value, and the value at the previous entry is
always the newest value. ⊓⊔
Theorem 2 (Aggregated Read from SCQ). Given an AST subformula node φ, the read
pointer read ptr, and the timestamp desired time, reading from φ’s SCQ as defined in
Algorithm 1

(
i.e., φ.read(read ptr,desired time)

)
will return the verdict-timestamp tuple

Tφ iff Tφ.v is the verdict for the entire interval [desired time,Tφ.τ ]. Figure 4 provides a
visualization of this theorem.

Fig. 4. Pictorial representation of aggregated read from SCQ in Theorem 2.
Proof. Each node stores two read pointers, φ.read1 ptr and φ.read2 ptr; one for each of
its possible children. When a parent node is reading a child node φ, the desired time is
always increasing such that desired time indicates the next timestamp required for evaluation
of the parent node φ; this directly follows from the implementation of R2U2’s MLTL and
ptMLTL operators (e.g., Algorithms 2 and 3). The minimal SCQ size in Equation 1 (proof
available in [51]) guarantees that the SCQ will either contain the desired time upon a call to
φ.read(read ptr,desired time) or will in the future.

At the beginning of each call to φ.read(read ptr,desired time), read ptr will point to
the earliest slot that might be of interest as it will either be (1) pointing to the first slot but
no value has ever been read before (initial condition), (2) pointing to the last value that was
read from the previous execution (line 10) such that we will either read from this slot (due to
aggregation) or a future slot, or (3) still pointing to the latest value in the SCQ from the previous
execution (line 13; follows from Theorem 1).

(only-if direction) Tφ.v is the verdict for the entire interval [desired time,Tφ.τ ]→ return
Tφ: If the SCQ is completely empty (i.e., no tuples have ever been written to the SCQ),
then there are no new tuples to read; therefore, Empty is returned on line 7. Based on
correct SCQ sizing and behavior of desired time and read ptr described above, if the slot
at read ptr has a timestamp ≥desired time, then Tφ.v is the verdict for the entire interval



Towards a Safe, Verified Runtime Monitor for Embedded Systems 9

[desired time,Tφ.τ ] and Tφ is returned on line 10. If not, then perhaps a future slot may
contain this information; therefore, read ptr is incremented in a circular manner on line 11
such that the SCQ will be incrementally scanned to find a tuple such that the timestamp
≥desired time. If one is found (since we are incrementally scanning forward), Tφ.v is the
verdict for the entire interval [desired time,Tφ.τ ] and Tφ is returned on line 10. If one is not
found, the scanning will stop when the read ptr is now pointing to the oldest value in the SCQ
(i.e., φ.write ptr) on line 12. Then, read ptr is decremented such that read ptr is pointing
to the latest written entry on line 13 (following from Theorem 1) andEmpty is returned.

(if direction) return Tφ→Tφ.v is the verdict for the entire interval [desired time,Tφ.τ ]: A
tuple Tφ is only returned on line 10, which requires Tφ.τ≥desired time; this requires that
either the slot at read ptr or a slot between read ptr and the latest entry to be≥desired time.
Since lines 8–12, incrementally scan forward in the SCQ until a tuple with timestamp ≥
desired time is found, Tφ.v is the verdict for the entire interval [desired time,Tφ.τ ]. If the
SCQ is completely empty, then there are no new tuples to read; therefore,Empty is returned on
line 7. If no entry has a timestamp ≥desired time, thenEmpty is returned on line 14. ⊓⊔

3.2 MLTL Temporal Operators
In the latest version of R2U2 (i.e., v3.0 [26]) and prior versions [29,42], only the Global (2) and
Until (U) MLTL temporal operators had direct encodings, and proofs of correctness were given
in [29]. Although these algorithms provided correct verdicts, the U operator required both ψ and
ξ to be known (for an arbitrary timestamp τ) to evaluate ψ UI ξ. As stated in Axiom 1, there
are three conditions in which U can be evaluated early without knowing both ψ and ξ. Since
runtime monitoring requires early-as-possible identification of failures to enable effective fault
recovery [5,6,29,42,51], verdicts should not be unnecessarily delayed; therefore, we rewrite the
U algorithm in Algorithm 2 to write a verdict when sufficient data is available according to
Axiom 1. We follow the same approach for the Release (R) operator following Axiom 2.

Algorithm 2: Until Operator: φ=ψ U[lb,ub] ξ

1 Initialize:
2 φ.previous=−1 // Initialize φ.previous; stores the last i written
3 φ.next time=lb // Initialize φ.next time; stores the next time for ψ and ξ
4 procedureUntil(ψ,ξ)

Input: Node:ψ; Node: ξ
5 Tψ =ψ.read(φ.read1 ptr,φ.next time) // Read Node ψ
6 Tξ = ξ.read(φ.read2 ptr,φ.next time) // Read Node ξ
7 if Tξ ≠Empty then // New Tξ
8 if Tξ.v then // Tξ.v=true
9 φ.previous=Tξ.τ−lb

10 φ.next time=Tξ.τ+1
11 φ.write(true,Tξ.τ−lb) // Writing Tφ=(true,Tξ.τ−lb)
12 return
13 if Tψ ≠Empty then // New Tψ and Tξ
14 τmin=min(Tψ.τ,Tξ.τ)
15 φ.next time=τmin+1
16 if !(Tψ.v) then // Tψ.v= false and Tξ.v= false
17 φ.previous=τmin−lb
18 φ.write(false,τmin−lb) // Writing Tφ=(false,τmin−lb)
19 return
20 if Tξ.τ >φ.previous+ub then // (Tψ=Empty or Tψ.v=true) and Tξ.v= false
21 φ.previous=Tξ.τ−ub
22 φ.next time=max(φ.next time,φ.previous+lb+1)
23 φ.write(false,Tξ.τ−ub) // Writing Tφ=(false,Tξ.τ−ub)

Theorem 3 (Correctness of the Until Operator). Given the interval [lb,ub] and two children
nodes ψ and ξ, Algorithm 2 writes the tuple Tφ to φ’s SCQ when sufficient data is available
such that for all i≥0, Tφ=(true,i) iff π,i |=ψ U[lb,ub] ξ.
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Proof. The φ.previous variable stores the previous time index i that node φ=ψ U[lb,ub] ξ
wrote to its SCQ. Before the first tuple is produced, φ.previous is initialized to −1 (line 2)
such that the condition on line 20 can be rewritten as Tξ.τ >−1+ub or rather Tξ.τ≥0+ub≡
Tξ.τ≥ub. Whenever a verdict-timestamp tuple is written, the φ.previous variable is updated
to that timestamp (lines 9, 17, and 21).

The φ.next time variable determines what timestamp is desired from both node ψ and node
ξ to make the next evaluation. The φ.next time variable is initialized on line 3 to lb since
ψ U[lb,ub] ξ can only be evaluated when |π|>i+lb on the interval [i+lb,i+ub] where i≥0,
such that [0,lb−1] is never required for evaluation. The φ.next time variable is then updated
during execution based on what is unknown about ψ and ξ. If both Tψ and Tξ are not empty,
then if Tψ.τ≥Tξ.τ , its unknown if ∃j∈ [Tξ.τ+1,Tψ.τ ] such that π,j |=ξ, and if Tψ.τ≤Tξ.τ ,
then its unknown if ∀k ∈ [Tψ.τ+1,Tξ.τ ] such that π,k |=ψ. Therefore, φ.next time will
be updated to min(Tψ.τ,Tξ.τ)+1 on line 15. Because of early evaluation (following from
Axiom 1), if a verdict-timestamp tuple is written, then φ.next time is updated to whichever
is greater: i+lb+1 (i.e., the lb of the next evaluation) or min(Tψ.τ,Tξ.τ)+1 (as described
above) on lines 10 and 22. Note that on line 10 this can be rewritten as just Tξ.τ+1 since
i+lb+1≡(Tξ.τ−lb)+lb+1≡Tξ.τ+1, and if Tψ.τ≤Tξ.τ , then Tψ.τ≤i+lb+1. Figures
5, 6, 7, and 8 illustrate examples of how the φ.next time variable is updated.

The φ.next time variable is then an input into the read functions on lines 5–6 (defined in
Algorithm 1) such that if the timestamp φ.next time is available in node ψ, then Tψ.v is the
verdict for the interval [φ.next time,Tψ.τ ], and if φ.next time is available in node ξ, then
Tξ.v is the verdict for the interval [φ.next time,Tξ.τ ] (following from Theorem 2).

(only-if direction) π,i |=ψ U[lb,ub] ξ→Tφ=(true,i):
We consider all possible combinations of Tψ and Tξ to determine if π,i |=ψ U[lb,ub] ξ:
(1) Tψ and Tξ are both empty: There is no new information based on φ.next time to evaluate

if π,i |=ψ U[lb,ub] ξ; therefore, the algorithm does nothing.
(2) Tψ is not empty and Tξ is empty: There is not enough information to determine if

∃j ∈ [i+ lb,i+ ub] such that π,j |= ξ, then ∀k < j where k ∈ [i+ lb,i+ ub] such
that π,k |=ψ (where i=φ.previous+1); therefore, the algorithm does nothing.

(3) Tξ.v = true (and Tψ is empty or Tψ.v = false or Tψ.v = true): Tξ.v is the verdict
from [φ.next time,Tξ.τ ] such that φ.next time is lb (initial condition) or was set by
the previous execution to φ.previous+ lb+ 1 or min(Tψ.τ,Tξ.τ) + 1 as described
above. Therefore, Tξ.v = true at φ.previous+ lb+1 and/or ∀k ∈ [φ.previous+ lb+
1,φ.next time − 1], π,k |= ψ (since the condition on line 16 was not met by the
previous execution). As a result, π,i |=ψ U[lb,ub] ξ (following directly from Axiom 1) for
φ.previous<i≤Tξ.τ−lb; therefore, (true,Tξ.τ−lb) is written to φ’s SCQ on line 11.
Figure 5 provides a visualization of this case.

Fig. 5. Pictorial representation of φ=ψ U[lb,ub] ξ for Theorem 3 Case (3).
(4) Tψ.v=false andTξ.v=false: If bothTψ.v andTξ.v are false, then they are both guaranteed

to be false from [φ.next time,min(Tψ.τ,Tξ.τ)]. Furthermore, Tξ.v is guaranteed to have
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never been true from [φ.previous+lb+1,Tξ.τ ] since the result would have been written
on line 11 and the φ.next time and φ.previous variables would have been updated
(lines 9–10). As a result, π,i |̸=ψ U[lb,ub] ξ for φ.previous<i≤min(Tψ.τ,Tξ.τ)−lb;
therefore, (false,min(Tψ.τ,Tξ.τ)−lb) is written to φ’s SCQ on line 18. Figure 6 provides
a visualization of this case.

Fig. 6. Pictorial representation of φ=ψ U[lb,ub] ξ for Theorem 3 Case (4).

(5) Tξ.v=false (and Tψ is empty or Tψ.v=true): There are two sub-cases to consider:
(a) There is enough information to determine that ∄j∈ [i+lb,i+ub] such that π,j |=ξ:

Tξ.v is guaranteed to have never been true from [φ.previous+ lb+1,Tξ.τ ] since
the result would have been written on line 11 and the φ.next time and φ.previous
variables would have been updated (lines 9–10). If Tξ.τ > φ.previous+ub, then
∄j ∈ [i+ lb,i+ub] such that π,j |= ξ where i∈ [φ.previous+1,Tξ.τ−ub]. As a
result, π,i |̸=ψ U[lb,ub] ξ for φ.previous< i≤Tξ.τ−ub (following directly from
Axiom 1); therefore, (false,Tξ.τ −ub) is written to φ’s SCQ on line 23. Figure 7
provides a visualization of this case.

Fig. 7. Pictorial representation of φ=ψ U[lb,ub] ξ for Theorem 3 Case (5)(a)
(b) There is currently not enough information to determine if ∃j∈ [i+lb,i+ub] such that

π,j |=ξ: If Tξ.τ≤φ.previous+ub, then there is not enough information to guarantee
that Tξ.v=false from [i+lb,i+ub] where i=φ.previous+1. There is still a chance
that ∃j∈ [Tξ.τ+1,i+ub] such that π,j |=ξ; therefore, the algorithm does not write a
tuple. Figure 8 provides a visualization of this case.

Fig. 8. Pictorial representation of φ=ψ U[lb,ub] ξ for Theorem 3 Case (5)(b)
(if direction) Tφ=(true,i)→π,i |=ψ U[lb,ub] ξ:

Tφ=(true,i) tuples are only written to φ’s SCQ on line 11, which requires that Tξ.v=true
is the verdict from [φ.next time,Tξ.τ ] such that φ.next time is lb (initial condition) or was
set by the previous execution to φ.previous+ lb+1 or min(Tψ.τ,Tξ.τ)+1 as described
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above. Therefore, Tξ.v=true at i+lb and/or ∀k∈ [i+lb,φ.next time], π,k |=ψ. As a result,
π,i |=ψ U[lb,ub] ξ for φ.previous<i≤Tξ.τ−lb (following directly from Axiom 1).
Tφ=(false,i) tuples are only written on lines 18 and 23 such that Tξ.v=false. In both cases,
Tξ.v is guaranteed to have never been true from [φ.previous+lb+1,Tξ.τ ] since the result
would have been written on line 11 and the φ.next time and φ.previous variables would
have been updated (lines 9–10). If Tψ.v= false, then π,i |̸=ψ U[lb,ub] ξ for φ.previous<
i≤min(Tψ.τ,Tξ.τ)− lb (line 18). If Tψ.v ≠ false and Tξ.τ >φ.previous+ub, then ∄j ∈
[i+lb,i+ub] such that π,j |=ξ; therefore, π,i |̸=ψ U[lb,ub] ξ for φ.previous<i≤Tξ.τ−ub
(line 23).
There are three conditions under which no verdict-timestamp tuples were written to φ’s SCQ
since there is not enough information to determine if π,i |=ψ U[lb,ub] ξ:
(1) Tψ and Tξ are both empty: There is not enough information to evaluate if π,i |=ψ U[lb,ub] ξ.
(2) Tψ is not empty and Tξ is empty: There is not enough information to determine if

∃j ∈ [i+ lb,i+ ub] such that π,j |= ξ, then ∀k < j where k ∈ [i+ lb,i+ ub] such
that π,k |=ψ; therefore, if π,i |=ψ U[lb,ub] ξ cannot be determined.

(3) Tξ.v=false and Tξ.τ≤φ.previous+ub and Tψ ≠false: There is not enough information
to guarantee that Tξ.v=false from [i+lb,i+ub] where i=φ.previous+1. There is still a
chance that ∃j∈ [Tξ.τ+1,i+ub] such that π,j |=ξ; therefore, if π,i |=ψ U[lb,ub] ξ cannot
be determined.

Verdict-timestamp tuples Tφ=(true,i) are only written to φ’s SCQ iff π,i |=ψU[lb,ub]ξ, and
Tφ=(false,i) are only written to φ’s SCQ iff π,i |̸=ψU[lb,ub]ξ. ⊓⊔

The algorithm and proof of the Release (R) operator follow very similarly to the Until (U)
operator and are available in Appendix B.

3.3 ptMLTL Temporal Operators
The SCQ architecture of R2U2 was developed in [29] and greatly reduced the memory
requirements of the previous implementation [42] as exemplified by R2U2’s integration on the
heavily resource-constrained FPGA of the Robonaut2’s knee joint. However, this new SCQ
architecture was only applied to R2U2’s MLTL operators. The past-time logic still implemented
the approach in [41] which utilized single read queues and encoded ptMTL [2,32] rather than
ptMLTL. Note that in ptMTL, there is no Trigger (T ) operator (see Figure 3), and the satisfaction
of π,i |=ψ S[lb,ub] ξ requires ψ to hold from the position where ξ holds in [i−ub,i−lb] to
position i, while in ptMLTL, ψ is only required to hold within the interval [i−ub,i−lb] after ξ
holds. Therefore, we compose new Since (S) and Trigger (T ) algorithms that utilize the SCQ
architecture and implement ptMLTL. Similar to the Until and Release operators (Section 3.2),
we ensure verdicts are written as soon as sufficient data is available according to Axioms 3 and
4. The algorithm of the Since (S) operator is available in Algorithm 3 and its corresponding
proof is available in Appendix C. The algorithm and proof of the Trigger (T ) operator follow
very similarly to the Since operator and are available in Appendix D.

3.4 Reduction of Instruction Size
As discussed in Section 2.2, R2U2 stores its computation instructions in a table; therefore, these
instructions require memory resources. We evaluated the current instruction format for both the
booleanizer and temporal logic (i.e., MLTL and ptMTL) instructions as present in R2U2 v3.0
[26] and were able to reduce the memory footprint of each (Figure 9). Within the booleanizer
instructions, we reduced the opcode down from 4 bytes (i.e., allows 4,294,967,296 opcodes) to 1
byte (i.e, allows 256 opcodes); R2U2 only currently supports 40 different booleanizer operations,
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Algorithm 3: Since Operator: φ=ψ S[lb,ub] ξ

1 Initialize:
2 φ.edge=−1 // Initialize φ.edge; stores the last i where π,i|=ξ
3 φ.previous=−1 // Initialize φ.previous; stores the last i written
4 φ.next time=0 // Initialize φ.next time; stores the next time for ψ and ξ
5 procedure Since(ψ,ξ)

Input: Node:ψ; Node: ξ
6 Tψ =ψ.read(φ.read1 ptr,φ.next time) // Read Node ψ
7 Tξ = ξ.read(φ.read2 ptr,φ.next time) // Read Node ξ
8 ifφ.previous+1−lb<0 then // i−lb<0
9 φ.previous=lb−1

10 φ.write(false,lb−1) // Writing Tφ=(false,lb−1)
11 if Tξ ≠Empty then // New Tξ
12 if Tξ.v then // Tξ.v=true
13 φ.edge=Tξ.τ // Updating φ.edge to last true edge
14 φ.next time=Tξ.τ+1 // Updating φ.next time to after φ.edge
15 if Tξ.τ >φ.previous−lb then // π,i−lb|=ξ
16 φ.previous=Tξ.τ+lb
17 φ.write(true,Tξ.τ+lb) // Writing Tφ=(true,Tξ.τ+lb)
18 return
19 else // Tξ.v= false
20 if φ.edge≤φ.previous−ub orφ.edge=−1 then // ∄j∈ [i−ub,Tξ.τ],π,j |=ξ
21 φ.next time=Tξ.τ+1 // Move φ.next time forward
22 if Tξ.τ >φ.previous−lb then // ∄j∈ [i−ub,i−lb],π,j |=ξ
23 φ.previous=Tξ.τ+lb
24 φ.write(false,Tξ.τ+lb) // Writing Tφ=(false,Tξ.τ+lb)
25 return
26 if Tψ ≠Empty then // New Tψ
27 if !(Tψ.v) then // Tψ.v= false and Tξ.v= false
28 φ.next time=Tξ.τ+1 // Move φ.next time forward
29 if Tξ.τ >φ.previous−lb then
30 φ.previous=Tξ.τ+lb
31 φ.write(false,Tξ.τ+lb) // Writing Tφ=(false,Tξ.τ+lb)
32 return

33 if Tψ ≠Empty then // New Tψ
/* ∃φ.edge∈ [i−ub,i−lb], such that ∀k>φ.edge where k≥i−lb, π,k |=ψ */

34 if Tψ.v and Tψ.τ >φ.previous−lb andφ.edge>φ.previous−ub andφ.edge≠−1 then
35 φ.previous=min(Tψ.τ+lb,φ.edge+ub) // Limit i based on φ.edge
36 φ.next time=max(φ.next time,φ.previous−ub+1)
37 φ.write(true,φ.previous) // Writing Tφ=(true,φ.previous)

(a) Previous Booleanizer Instruction Format

(b) New Booleanizer Instruction Format

(c) Previous Temporal Logic Instruction Format

(d) New Temporal Logic Instruction Format
Fig. 9. Comparison of previous [26] and new
instruction formats

and 1 byte still allows the booleanizer to sup-
port 216 more opcodes without increasing
the size. On the other hand, we increased the
size of the memory reference address field
from 1 (i.e., allowed for only 256 boolean
instructions total) to 4 bytes. We kept the first
operand field as 8 bytes to allow for possible
loading of doubles, but reduced the second
operand field to 4 since this field will only
ever contain an address to another booleanizer
instruction, which is constricted to a max of
4 bytes. Lastly, we removed the parameters
to store the final result of the booleanizer (i.e.,
atomic address and store flag) from every
instruction. There is now a separate store in-
struction for when the booleanizer has completed its computations and needs to return/store the
atomic for the temporal logic operators to read. Within the temporal logic instructions, we also
decreased the opcode down from 4 bytes to 1 byte, and we decreased the operand type values
down from 4 bytes to 1 byte as these flags only store a value of 0, 1, or 2, indicating whether
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the operand is an atomic, a subformula, or a constant. These simple optimizations are significant
as each booleanizer instruction decreased from 28 bytes to 20 bytes and each temporal logic
instruction decreased from 28 to 16 bytes.
3.5 Latency and Memory Analysis

(a) 95% tail latency (µs) (b) Total queue memory (KB) (c) Total instruction memory (KB)
Fig. 10. Comparison of latency and memory requirements between R2U2 C v3.0 [26] and R2U2 Rust.

We manually transpile R2U2 v3.0 [26] from C to safe embedded Rust and apply the
optimizations and proved algorithms given in Sections 3–3.4. To evaluate the effectiveness
of our optimizations, we compare the latency and memory requirements of our Rust im-
plementation against R2U2 v3.0 on a suite of benchmarks. The benchmarks utilized are as
follows: (1) 22 MLTL specifications utilized to verify the electrical power system of the
CySat-I CubeSat [5], (2) 16 MLTL specifications for the Nova Somnium sounding rocket’s
aerobraking control system [24], (3) 35 random hand-written MLTL specifications, and
(4) 35 random hand-written ptMLTL specifications.5 In Figure 10a, we recorded the 95%
tail latency (i.e., 95% of recorded latencies are less than or equal to the given latency) for
each time step where |π| = 1,000,000 on a 2.8 GHz Quad-Core Intel® i7 processor with
16GB of RAM; a 1.5–10.5x decrease in latency was observed depending on the bench-
mark, which can mostly be accredited to the reduction of instructions through direct encod-
ings.5 Figure 10b reveals a 1.5–3x decrease in total queue memory size for each benchmark;

Benchmark Clock Cycles Time (ms)
CySat-I 257836 5.371

Sounding Rocket 117827 2.454
MLTL Random 266507 5.552

ptMLTL Random 384825 8.017
Fig. 11. Latency on STM32F3DISCOVERY

this is accredited to the reduction in the num-
ber of instructions through direct encodings,
removal of the two extra entries in each queue
from the previous implementation of the SCQ
read/write operations (Section 3.1), and mod-
ifying past-time to utilize SCQs (Section 3.3).
Figure 10c indicates a 2–2.7x decrease in in-
struction memory size as a result of directly encoding instructions and refining R2U2’s instruction
format (Section 3.4). We also ran our embedded Rust implementation on a resource-constrained
bare-metal STM32F3DISCOVERY microcontroller with 48MHz system clock, 256KB of flash
memory, and 48KB of RAM [49], and the average latency observed is recorded in Figure 11.
While the latency on the STM32F3DISCOVERY microcontroller is greater than on the Intel® i7
processor, these latencies still indicate real-time performance.

4 Verification of R2U2’s Rust Implementation
We examined three Rust code verification tools to verify R2U2’s Rust implementation: Creusot
[17], Prusti [3,4], and Verus [33,34]. Creusot encodes a Rust application in the WhyML

5 Benchmarks and more analysis available at https://temporallogic.org/research/R2U2Rust

https://temporallogic.org/research/R2U2Rust
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intermediate verification language for use in Why3 [20], where Why3 directly encodes SMT
queries for input into backend solvers like the Z3 SMT solver [16]; Prusti translates an entire
Rust application into the Viper intermediate verification language [38] and the Viper program
is verified using Viper’s symbolic execution verifier (which further translates to SMT queries
for Z3); and Verus encodes Rust code directly to SMT-LIB [7] for input into Z3. As a result,
Verus is faster than both Creusot and Prusti as it directly encodes SMT queries, and Prusti is the
slowest as it involves several additional steps, including re-verifying Rust’s type checking in
Viper [33]. On the other hand, Prusti was the simplest tool to run as the full tool is available as a
plugin extension directly inside VSCode, compared to Creusot and Verus which each require
local installations. Prusti and Creusot are also directly compatible with Rust’s Cargo package
manager, but currently, Verus is not. Verus is only compatible with rustc (i.e., the Rust compiler),
which requires directly specifying compilation flags (including linking dependencies).

After experimenting with each tool, we found pre- and post-conditions easier to compose with
Verus’s ‘requires’ and ‘ensures’ blocks, compared to Prusti and Creusot’s clauses. For example,
Creusot could not automatically reason about our structs with a ‘Default’ implementation,6 and
Prusti cannot unwrap ‘Option’ Rust types in pre- and post-conditions.7 As a result, we were
unable to directly specify the complex specifications required for R2U2’s temporal operators in
Prusti or Creusot. Therefore, we utilized Verus to verify R2U2. It is important to note that there
are still parts of R2U2 that could not be verified with Verus such as floats, modulo operations,
and certain &mut references, and we also discovered a bug within Verus where arrays cannot
be sized according to constant values.8 While Verus has its shortcomings, we were able to
overcome most of them and found it easier than Prusti or Creusot for verifying R2U2.

Verus automatically detected multiple locations within the booleanizer implementation
(Section 2.2) that could result in underflow or overflow; this included operators that added,
subtracted, or multiplied two integers together. For release builds, Rust will perform wrapping
operations by default where the underflow and overflow bits are just ignored. To eradicate
the possibility of unnoticed underflow or overflows, we specified saturating add, subtract, and
multiply operators such that if the result underflows, the result will be the minimum value that
can be stored in the result type, and if it overflows, the result will be the maximum value that
can be stored in the result type. Since the booleanizer will eventually compare integers utilizing
comparators (i.e.,>,<, ≤, ≥, and =), saturating operations are safer. Furthermore, we added
an overflow detection flag that can easily be read, reset, and mitigated by the monitored system.

We specify pre- and post-conditions for every R2U2 operator that is possible with Verus. The
pre- and post-conditions in the booleanizer are directly mapped to ensure saturating operations
and correct overflow detection. The pre- and post-conditions for the MLTL and ptMLTL
operators directly ensure all cases and claims in the hand-constructed proofs presented in Section
3. In total, there are 487 lines of code contracts that verify a total of 25 operators. Through these
pre- and post-conditions, we are able to ensure correct implementation of our algorithms in
Rust. During this process, we also found Verus helpful in refining our initial hand-constructed
algorithms by removing vacuous conditions. On the other hand, Verus was not able to verify all
of R2U2’s Rust code nor was it able to consider the correctness of the C2PO compiler; therefore,
we also exhaustively test all of our MLTL operators according to the strategy in [30].

6 https://github.com/creusot-rs/creusot/issues/792
7 https://github.com/viperproject/prusti-dev/issues/1306
8 https://github.com/verus-lang/verus/issues/1334
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5 Conclusion and Future Work
We developed a new implementation of R2U2 written in safe embedded Rust that significantly
decreases its previous resource overhead and provides improved guarantees of correctness
through hand-constructed proofs, testing, and Verus code contracts. While we hand-constructed
our proofs, we eventually hope to formalize R2U2 in a proof assistant such as Isabelle/HOL,
and we also anticipate more intuitive automatic test generation that can test a wider range of
both MLTL and ptMLTL formulas against an oracle such as [31]. While Verus has its current
limitations, we look forward to the further development of Verus’s capabilities and plan to
incorporate more deductive code verification as features become available.
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A Boolean Connectives

Algorithm 4: Negation Operator: φ=¬ψ
1 procedureNegation(ψ)
2 Initialize:
3 φ.next time=0 // Initialize φ.next time; stores the next time for ψ

Input: Node:ψ
4 Tψ =ψ.read(φ.read1 ptr,φ.next time) // Read Node ψ
5 if Tψ ≠Empty then // New Tψ
6 if !(Tψ.v) then // Tψ.v= false
7 φ.next time=Tψ.τ+1
8 φ.write(true,Tψ.τ) // Writing Tφ=(true,Tψ.τ)
9 else // Tψ.v=true

10 φ.next time=Tψ.τ+1
11 φ.write(false,Tψ.τ) // Writing Tφ=(false,Tψ.τ)

Theorem 4 (Correctness of the Negation Operator). Given the child node ψ, Algorithm
4 writes the tuple Tφ to φ’s SCQ when sufficient data is available such that for all i≥ 0,
Tφ=(true,i) iff π,i |=¬ψ.
Proof. The φ.next time variable determines what timestamp is desired from node ψ to make
the next evaluation. Theφ.next time variable is initialized to 0 on line 3. If a verdict-timestamp
tuple is written, then φ.next time is updated to i+1 (lines 7 and 10).

The φ.next time variable is then an input into the read function on line 4 (defined in
Algorithm 1) such that if the timestamp φ.next time is available in node ψ, then Tψ.v is the
verdict for the interval [φ.next time,Tψ.τ ] (following from Theorem 2).

(only-if direction) π,i |= ¬ψ → Tφ = (true,i): We consider all possibilities of Tψ to
determine if π,i |=¬ψ:
(1) Tψ is empty: There is no new information based in φ.next time to evaluate if π,i |=¬ψ;

therefore, the algorithm does nothing.
(2) Tψ.v=false: Tψ.v=false for [φ.next time,Tψ.τ ] such that π,i |̸=ψ for φ.next time≤

i≤Tψ.τ ; therefore, (true,Tψ.τ) is written to φ’s SCQ on line 8.
(3) Tψ.v=true: Tψ.v=true for [φ.next time,Tψ.τ ] such that π,i |=ψ for φ.next time≤

i≤Tψ.τ ; therefore, (false,Tψ.τ) is written to φ’s SCQ on line 11.
(if direction) Tφ=(true,i)→π,i |=¬ψ:
Tφ=(true,i) tuples are only written toφ’s SCQ on line 8, which requires that Tψ.v=false from
[φ.next time,Tψ.τ ]; therefore, π,i |̸=ψ for φ.next time≤ i≤Tψ.τ . As a result, π,i |=¬ψ
for φ.next time≤i≤Tψ.τ .
Tφ=(false,i) tuples are only written to φ’s SCQ on line 11, which requires that Tψ.v=true
from [φ.next time,Tψ.τ ]; therefore, π,i |= ψ for φ.next time ≤ i ≤ Tψ.τ . As a result,
π,i |̸=¬ψ for φ.next time≤i≤Tψ.τ .
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There is only one condition under which no verdict-timestamp tuples were written to φ’s SCQ
since there is not enough information to determine if π,i |=¬ψ: Tψ is empty.

Verdict-timestamp tuples Tφ = (true,i) are only written to φ’s SCQ iff π,i |= ¬ψ, and
Tφ=(false,i) are only written to φ’s SCQ iff π,i |̸=¬ψ. ⊓⊔

Algorithm 5: And Operator: φ=ψ ∧ ξ
1 procedureAnd(ψ,ξ)
2 Initialize:
3 φ.next time=0 // Initialize φ.next time;stores the next time for ψ and ξ

Input: Node:ψ; Node: ξ
4 Tψ =ψ.read(φ.read1 ptr,φ.next time) // Read Node ψ
5 Tξ = ξ.read(φ.read2 ptr,φ.next time) // Read Node ξ
6 if Tψ ≠Empty and Tξ ≠Empty then // New Tψ and Tξ
7 if Tψ.v and Tξ.v then // Tψ.v=true and Tξ.v=true
8 τmin=min(Tψ.τ,Tξ.τ)
9 φ.next time=τmin+1

10 φ.write(true,τmin) // Writing Tφ=(true,τmin)
11 return
12 else if !(Tψ.v) and !(Tξ.v) then // Tψ.v= false and Tξ.v= false
13 τmax=max(Tψ.τ,Tξ.τ)
14 φ.next time=τmax+1
15 φ.write(false,τmax) // Writing Tφ=(false,τmax)
16 return
17 if Tψ ≠Empty then // New Tψ
18 if !(Tψ.v) then // Tψ.v= false
19 φ.next time=Tψ.τ+1
20 φ.write(false,Tψ.τ) // Writing Tφ=(false,Tψ.τ)
21 if Tξ ≠Empty then // New Tξ
22 if !(Tξ.v) then // Tξ.v= false
23 φ.next time=Tξ.τ+1
24 φ.write(false,Tξ.τ) // Writing Tφ=(false,Tξ.τ)

Theorem 5 (Correctness of the And Operator). Given the interval [lb,ub] and two children
nodes ψ and ξ, Algorithm 5 writes the tuple Tφ to φ’s SCQ when sufficient data is available
such that for all i≥0, Tφ=(true,i) iff π,i |=ψ ∧ ξ.
Proof. The φ.next time variable determines what timestamp is desired from both node ψ and
node ξ to make the next evaluation. The φ.next time variable is initialized to 0 on line 3. If a
verdict-timestamp tuple is written, then φ.next time is updated to i+1 (lines 9, 14, 19, and
23).

The φ.next time variable is then an input into the read functions on lines 4–5 (defined in
Algorithm 1) such that if the timestamp φ.next time is available in node ψ, then Tψ.v is the
verdict for the interval [φ.next time,Tψ.τ ], and if φ.next time is available in node ξ, then
Tξ.v is the verdict for the interval [φ.next time,Tξ.τ ] (following from Theorem 2).

(only-if direction) π,i |=ψ ∧ ξ→Tφ=(true,i): We consider all possible combinations of
Tψ and Tξ to determine if π,i |=ψ ∧ ξ:
(1) Tψ and Tξ are both empty: There is no new information based on φ.next time to evaluate

if π,i |=ψ ∧ ξ; therefore, the algorithm does nothing.
(2) (Tψ.v= true and Tξ is empty) or (Tψ is empty and Tξ.v= true): There is not enough

information to determine if both π,i |=ψ and π,i |=ξ; therefore, the algorithm does nothing.
(3) Tψ.v = true and Tξ.v = true: If both Tψ.v and Tξ.v are true, then they are both

guaranteed to be true from [φ.next time,min(Tψ.τ,Tξ.τ)]. As a result, π,i |=ψ ∧ ξ for
φ.next time≤i≤min(Tψ.τ,Tξ.τ); therefore, (true,min(Tψ.τ,Tξ.τ)) is written to φ’s
SCQ on line 10.

(4) Tψ.v = false and Tξ.v = false: If both Tψ.v and Tξ.v are false, then they are both
guaranteed to be false from [φ.next time,min(Tψ.τ,Tξ.τ)], but one of them is false
from [φ.next time,max(Tψ.τ,Tξ.τ)]. As a result, π,i |̸=ψ ∧ ξ for φ.next time≤i≤
max(Tψ.τ,Tξ.τ); therefore, (false,max(Tψ.τ,Tξ.τ)) is written to φ’s SCQ on line 15.
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(5) Tψ.v=false and Tξ is empty: Tψ.v=false for [φ.next time,Tψ.τ ] such that π,i |̸=ψ for
φ.next time≤i≤Tψ.τ . As a result, π,i |̸=ψ ∧ ξ for φ.next time≤i≤Tψ.τ ; therefore,
(false,Tψ.τ) is written to φ’s SCQ on line 20.

(6) Tψ is empty and Tξ.v= false: Tξ.v= false for [φ.next time,Tξ.τ ] such that π,i |̸=ξ for
φ.next time≤i≤Tξ.τ . As a result, π,i |̸=ψ ∧ ξ for φ.next time≤i≤Tξ.τ ; therefore,
(false,Tξ.τ) is written to φ’s SCQ on line 24.

(if direction) Tφ=(true,i)→π,i |=ψ ∧ ξ:
Tφ=(true,i) tuples are only written toφ’s SCQ on line 10, which requires that bothTψ.v=true
and Tξ.v=true; therefore, π,i |=ψ and π,i |=ξ for φ.next time≤i≤min(Tψ.τ,Tξ.τ). As a
result, π,i |=ψ ∧ ξ for φ.next time≤i≤min(Tψ.τ,Tξ.τ).
Tφ=(false,i) tuples are only written to φ’s SCQ on lines 15, 20, and 24:
(1) line 15: It is guaranteed that both Tψ.v and Tξ.v are false from [φ.next time,

min(Tψ.τ,Tξ.τ)], but one of them is false from [φ.next time,max(Tψ.τ,Tξ.τ)]. As a
result, π,i |̸=ψ ∧ ξ for φ.next time≤i≤max(Tψ.τ,Tξ.τ).

(2) line 20: Tψ.v= false for [φ.next time,Tψ.τ ] such that π,i |̸=ψ for φ.next time≤ i≤
Tψ.τ . As a result, π,i |̸=ψ ∧ ξ for φ.next time≤i≤Tψ.τ .

(3) line 24: Tξ.v= false for [φ.next time,Tξ.τ ] such that π,i |̸= ξ for φ.next time≤ i≤
Tξ.τ . As a result, π,i |̸=ψ ∧ ξ for φ.next time≤i≤Tξ.τ .

There are three conditions under which no verdict-timestamp tuples were written to φ’s SCQ
since there is not enough information to determine if π,i |=ψ ∧ ξ:
(1) Tψ and Tξ are both empty: There is not enough information to evaluate if π,i |=ψ ∧ ξ.
(2) Tψ.v= true and Tξ is empty: There is not enough information to determine if π,i |= ξ;

therefore if π,i |=ψ ∧ ξ cannot be determined.
(3) Tψ is empty and Tξ.v= true: There is not enough information to determine if π,i |=ψ;

therefore if π,i |=ψ ∧ ξ cannot be determined.
Verdict-timestamp tuples Tφ=(true,i) are only written to φ’s SCQ iff π,i |=ψ ∧ ξ, and

Tφ=(false,i) are only written to φ’s SCQ iff π,i |̸=ψ ∧ ξ. ⊓⊔

Algorithm 6: Or Operator: φ=ψ ∨ ξ
1 procedureOr(ψ,ξ)
2 Initialize:
3 φ.next time=0 // Initialize φ.next time;stores the next time for ψ and ξ

Input: Node:ψ; Node: ξ
4 Tψ =ψ.read(φ.read1 ptr,φ.next time) // Read Node ψ
5 Tξ = ξ.read(φ.read2 ptr,φ.next time) // Read Node ξ
6 if Tψ ≠Empty and Tξ ≠Empty then // New Tψ and Tξ
7 if Tψ.v and Tξ.v then // Tψ.v=true and Tξ.v=true
8 τmax=max(Tψ.τ,Tξ.τ)
9 φ.next time=τmax+1

10 φ.write(true,τmax) // Writing Tφ=(true,τmax)
11 return
12 else if !(Tψ.v) and !(Tξ.v) then // Tψ.v= false and Tξ.v= false
13 τmin=min(Tψ.τ,Tξ.τ)
14 φ.next time=τmin+1
15 φ.write(false,τmin) // Writing Tφ=(false,τmin)
16 return
17 if Tψ ≠Empty then // New Tψ
18 if Tψ.v then // Tψ.v=true
19 φ.next time=Tψ.τ+1
20 φ.write(true,Tψ.τ) // Writing Tφ=(true,Tψ.τ)
21 if Tξ ≠Empty then // New Tξ
22 if Tξ.v then // Tξ.v=true
23 φ.next time=Tξ.τ+1
24 φ.write(true,Tξ.τ) // Writing Tφ=(true,Tξ.τ)
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Theorem 6 (Correctness of the Or Operator). Given the interval [lb,ub] and two children
nodes ψ and ξ, Algorithm 6 writes the tuple Tφ to φ’s SCQ when sufficient data is available
such that for all i≥0, Tφ=(true,i) iff π,i |=ψ ∨ ξ.

Proof. The φ.next time variable determines what timestamp is desired from both node ψ and
node ξ to make the next evaluation. The φ.next time variable is initialized to 0 on line 3. If a
verdict-timestamp tuple is written, then φ.next time is updated to i+1 (lines 9, 14, 19, and
23).

The φ.next time variable is then an input into the read functions on lines 4–5 (defined in
Algorithm 1) such that if the timestamp φ.next time is available in node ψ, then Tψ.v is the
verdict for the interval [φ.next time,Tψ.τ ], and if φ.next time is available in node ξ, then
Tξ.v is the verdict for the interval [φ.next time,Tξ.τ ] (following from Theorem 2).

(only-if direction) π,i |=ψ ∨ ξ→Tφ=(true,i): We consider all possible combinations of
Tψ and Tξ to determine if π,i |=ψ ∨ ξ:
(1) Tψ and Tξ are both empty: There is no new information based on φ.next time to evaluate

if π,i |=ψ ∨ ξ; therefore, the algorithm does nothing.
(2) (Tψ.v= false and Tξ is empty) or (Tψ is empty and Tξ.v= false): There is not enough

information to determine if either π,i |=ψ or π,i |=ξ; therefore, the algorithm does nothing.
(3) Tψ.v = true and Tξ.v = true: If both Tψ.v and Tξ.v are true, then they are both

guaranteed to be true from [φ.next time,min(Tψ.τ,Tξ.τ)], but one of them is true from
[φ.next time,max(Tψ.τ,Tξ.τ)]. As a result, π,i |= ψ ∨ ξ for φ.next time ≤ i ≤
max(Tψ.τ,Tξ.τ); therefore, (true,max(Tψ.τ,Tξ.τ)) is written to φ’s SCQ on line 10.

(4) Tψ.v = false and Tξ.v = false: If both Tψ.v and Tξ.v are false, then they are both
guaranteed to be false from [φ.next time,min(Tψ.τ,Tξ.τ)]. As a result, π,i |̸=ψ ∨ ξ for
φ.next time≤i≤min(Tψ.τ,Tξ.τ); therefore, (false,min(Tψ.τ,Tξ.τ)) is written to φ’s
SCQ on line 15.

(5) Tψ.v= true and Tξ is empty: Tψ.v= true for [φ.next time,Tψ.τ ] such that π,i |=ψ
for φ.next time≤ i≤ Tψ.τ . As a result, π,i |=ψ ∨ ξ for φ.next time≤ i≤ Tψ.τ ;
therefore, (true,Tψ.τ) is written to φ’s SCQ on line 20.

(6) Tψ is empty and Tξ.v= true: Tξ.v= true for [φ.next time,Tξ.τ ] such that π,i |=ξ for
φ.next time≤i≤Tξ.τ . As a result, π,i |=ψ ∨ ξ for φ.next time≤i≤Tξ.τ ; therefore,
(true,Tξ.τ) is written to φ’s SCQ on line 24.

(if direction) Tφ=(true,i)→π,i |=ψ ∨ ξ:
Tφ=(false,i) tuples are only written to φ’s SCQ on lines 10, 20, and 24:
(1) line 10: It is guaranteed that bothTψ.v andTξ.v are true from [φ.next time,min(Tψ.τ,Tξ.τ)],

but one of them is true from [φ.next time,max(Tψ.τ,Tξ.τ)]. As a result, π,i |=ψ ∨ ξ
for φ.next time≤i≤max(Tψ.τ,Tξ.τ).

(2) line 20: Tψ.v= true for [φ.next time,Tψ.τ ] such that π,i |=ψ for φ.next time≤ i≤
Tψ.τ . As a result, π,i |=ψ ∨ ξ for φ.next time≤i≤Tψ.τ .

(3) line 24:Tξ.v=true for [φ.next time,Tξ.τ ] such that π,i |=ξ forφ.next time≤i≤Tξ.τ .
As a result, π,i |=ψ ∨ ξ for φ.next time≤i≤Tξ.τ .

Tφ=(false,i) tuples are only written to φ’s SCQ on line 15, which requires that both Tψ.v=
false and Tξ.v=false; therefore, π,i |̸=ψ and π,i |̸=ξ for φ.next time≤i≤min(Tψ.τ,Tξ.τ).
As a result, π,i |̸=ψ ∧ ξ for φ.next time≤i≤min(Tψ.τ,Tξ.τ).

There are three conditions under which no verdict-timestamp tuples were written to φ’s SCQ
since there is not enough information to determine if π,i |=ψ ∨ ξ:
(1) Tψ and Tξ are both empty: There is not enough information to evaluate if π,i |=ψ ∨ ξ.
(2) Tψ.v= false and Tξ is empty: There is not enough information to determine if π,i |= ξ;

therefore if π,i |=ψ ∨ ξ cannot be determined.
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(3) Tψ is empty and Tξ.v= false: There is not enough information to determine if π,i |=ψ;
therefore if π,i |=ψ ∨ ξ cannot be determined.

Verdict-timestamp tuples Tφ=(true,i) are only written to φ’s SCQ iff π,i |=ψ ∨ ξ, and
Tφ=(false,i) are only written to φ’s SCQ iff π,i |̸=ψ ∨ ξ. ⊓⊔

Algorithm 7: Iff Operator: φ=ψ ↔ ξ

1 procedure Iff(ψ,ξ)
2 Initialize:
3 φ.next time=0 // Initialize φ.next time;stores the next time for ψ and ξ

Input: Node:ψ; Node: ξ
4 Tψ =ψ.read(φ.read1 ptr,φ.next time) // Read Node ψ
5 Tξ = ξ.read(φ.read2 ptr,φ.next time) // Read Node ξ
6 if Tψ ≠Empty and Tξ ≠Empty then // New Tψ and Tξ
7 τmin=min(Tψ.τ,Tξ.τ)
8 φ.next time=τmin+1
9 if Tψ.v and Tξ.v then // Tψ.v=true and Tξ.v=true

10 φ.write(true,τmin) // Writing Tφ=(true,τmin)
11 else if !(Tψ.v) and !(Tξ.v) then // Tψ.v= false and Tξ.v= false
12 φ.write(true,τmin) // Writing Tφ=(true,τmin)
13 else
14 φ.write(false,τmin) // Writing Tφ=(false,τmin)

Theorem 7 (Correctness of the Iff Operator). Given the interval [lb,ub] and two children
nodes ψ and ξ, Algorithm 6 writes the tuple Tφ to φ’s SCQ when sufficient data is available
such that for all i≥0, Tφ=(true,i) iff π,i |=ψ ↔ ξ.

Proof. The φ.next time variable determines what timestamp is desired from both node ψ and
node ξ to make the next evaluation. The φ.next time variable is initialized to 0 on line 3. If a
verdict-timestamp tuple is written, then φ.next time is updated to i+1 (lines 8).

The φ.next time variable is then an input into the read functions on lines 4–5 (defined in
Algorithm 1) such that if the timestamp φ.next time is available in node ψ, then Tψ.v is the
verdict for the interval [φ.next time,Tψ.τ ], and if φ.next time is available in node ξ, then
Tξ.v is the verdict for the interval [φ.next time,Tξ.τ ] (following from Theorem 2).

(only-if direction) π,i |=ψ ↔ ξ→Tφ=(true,i): We consider all possible combinations of
Tψ and Tξ to determine if π,i |=ψ ↔ ξ:
(1) Tψ is empty or Tξ is empty: There is not enough information to determine both if π,i |=ψ

and if π,i |=ξ; therefore, the algorithm does nothing.
(2) Tψ.v = true and Tξ.v = true: If both Tψ.v and Tξ.v are true, then they are both

guaranteed to be true from [φ.next time,min(Tψ.τ,Tξ.τ)]. As a result, π,i |=ψ ↔ ξ
for φ.next time≤i≤min(Tψ.τ,Tξ.τ); therefore, (true,min(Tψ.τ,Tξ.τ)) is written to
φ’s SCQ on line 10.

(3) Tψ.v = false and Tξ.v = false: If both Tψ.v and Tξ.v are false, then they are both
guaranteed to be false from [φ.next time,min(Tψ.τ,Tξ.τ)]. As a result, π,i |=ψ ↔ ξ
for φ.next time≤i≤min(Tψ.τ,Tξ.τ); therefore, (true,min(Tψ.τ,Tξ.τ)) is written to
φ’s SCQ on line 12.

(4) (Tψ.v = true and Tξ.v = false) or (Tψ.v = false and Tξ.v = true): Both Tψ.v and
Tξ.v are guaranteed to be the verdicts from [φ.next time,min(Tψ.τ,Tξ.τ)]; therefore,
either π,i |̸=ψ→ξ or π,i |̸=ξ→ψ for φ.next time≤ i≤min(Tψ.τ,Tξ.τ). As a result,
π,i |̸=ψ ↔ ξ forφ.next time≤i≤min(Tψ.τ,Tξ.τ); therefore, (false,min(Tψ.τ,Tξ.τ))
is written to φ’s SCQ on line 14.

(if direction) Tφ=(true,i)→π,i |=ψ ↔ ξ:
Tφ=(true,i) tuples are only written to φ’s SCQ on lines 10 and 12:
(1) line 10: It is guaranteed that both Tψ.v and Tξ.v are true from [φ.next time,

min(Tψ.τ,Tξ.τ)]. As a result, π,i |=ψ ↔ ξ for φ.next time≤i≤max(Tψ.τ,Tξ.τ).
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(2) line 12: It is guaranteed that both Tψ.v and Tξ.v are false from [φ.next time,
min(Tψ.τ,Tξ.τ)]. As a result, π,i |=ψ ↔ ξ for φ.next time≤i≤max(Tψ.τ,Tξ.τ).

Tφ = (false, i) tuples are only written to φ’s SCQ on line 14, which requires that either
Tψ.v= true and Tξ.v= false, or Tψ.v= false and Tξ.v= true; therefore, either π,i |̸=ψ→ξ
or π,i |̸= ξ→ ψ for φ.next time≤ i≤min(Tψ.τ,Tξ.τ). As a result, π,i |̸= ψ ↔ ξ for
φ.next time≤i≤min(Tψ.τ,Tξ.τ).

There is only one condition under which no verdict-timestamp tuples were written to φ’s
SCQ since there is not enough information to determine if π,i |=ψ ↔ ξ: Tψ is empty or Tξ is
empty.

Verdict-timestamp tuples Tφ=(true,i) are only written to φ’s SCQ iff π,i |=ψ ↔ ξ, and
Tφ=(false,i) are only written to φ’s SCQ iff π,i |̸=ψ ↔ ξ. ⊓⊔

B Release (R) Operator

Algorithm 8: Release Operator: φ=ψR[lb,ub] ξ

1 Initialize:
2 φ.previous=−1 // Initialize φ.previous; stores the last i written
3 φ.next time=lb // Initialize φ.next time; stores the next time for ψ and ξ
4 procedureRelease(ψ,ξ)

Input: Node:ψ; Node: ξ
5 Tψ =ψ.read(φ.read1 ptr,φ.next time) // Read Node ψ
6 Tξ = ξ.read(φ.read2 ptr,φ.next time) // Read Node ξ
7 if Tξ ≠Empty then // New Tξ
8 if !(Tξ.v) then // Tξ.v= false
9 φ.previous=Tξ.τ−lb

10 φ.next time=Tξ.τ+1
11 φ.write(false,Tξ.τ−lb) // Writing Tφ=(false,Tξ.τ−lb)
12 return
13 if Tψ ≠Empty then // New Tψ and Tξ
14 τmin=min(Tψ.τ,Tξ.τ)
15 φ.next time=τmin+1
16 if Tψ.v then // Tψ.v=true and Tξ.v=true
17 φ.previous=τmin−lb
18 φ.write(true,τmin−lb) // Writing Tφ=(true,τmin−lb)
19 return
20 if Tξ.τ >φ.previous+ub then // (Tψ=Empty or Tψ.v= false) and Tξ.v= false
21 φ.previous=Tξ.τ−ub
22 φ.next time=max(φ.next time,φ.previous+lb+1)
23 φ.write(true,Tξ.τ−ub) // Writing Tφ=(true,Tξ.τ−ub)

Theorem 8 (Correctness of the Release Operator). Given the interval [lb,ub] and two
children nodes ψ and ξ, Algorithm 8 writes the tuple Tφ to φ’s SCQ when sufficient data is
available such that for all i≥0, Tφ=(true,i) iff π,i |=ψ R[lb,ub] ξ.

Proof. The φ.previous variable stores the previous time index i that node φ=ψ R[lb,ub] ξ
wrote to its SCQ. Before the first tuple is produced, φ.previous is initialized to −1 (line 2)
such that the condition on line 20 can be rewritten as Tξ.τ >−1+ub or rather Tξ.τ≥0+ub≡
Tξ.τ≥ub. Whenever a verdict-timestamp tuple is written, the φ.previous variable is updated
to that timestamp (lines 9, 17, and 21).

The φ.next time variable determines what timestamp is desired from both node ψ and node
ξ to make the next evaluation. The φ.next time variable is initialized on line 3 to lb since
ψ R[lb,ub] ξ can only be evaluated when |π|>i+lb on the interval [i+lb,i+ub] where i≥0,
such that [0,lb−1] is never required for evaluation. The φ.next time variable is then updated
during execution based on what is unknown about ψ and ξ. If both Tψ and Tξ are not empty,
then if Tψ.τ≥Tξ.τ , its unknown if ∃j∈ [Tξ.τ+1,Tψ.τ ] such that π,j |̸=ξ, and if Tψ.τ≤Tξ.τ ,
then its unknown if ∃k ∈ [Tψ.τ+1,Tξ.τ ] such that π,k |=ψ. Therefore, φ.next time will
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be updated to min(Tψ.τ,Tξ.τ)+1 on line 15. Because of early evaluation (following from
Axiom 2), if a verdict-timestamp tuple is written, then φ.next time is updated to whichever
is greater: i+lb+1 (i.e., the lb of the next evaluation) or min(Tψ.τ,Tξ.τ)+1 (as described
above) on lines 10 and 22. Note that on line 10 this can be rewritten as just Tξ.τ+1 since
i+lb+1≡(Tξ.τ−lb)+lb+1≡Tξ.τ+1, and if Tψ.τ≤Tξ.τ , then Tψ.τ≤i+lb+1. Figures
12, 13, 14, and 15 illustrate examples of how the φ.next time variable is updated.

The φ.next time variable is then an input into the read functions on lines 5–6 (defined in
Algorithm 1) such that if the timestamp φ.next time is available in node ψ, then Tψ.v is the
verdict for the interval [φ.next time,Tψ.τ ], and if φ.next time is available in node ξ, then
Tξ.v is the verdict for the interval [φ.next time,Tξ.τ ] (following from Theorem 2).

(only-if direction) π,i |=ψ R[lb,ub] ξ→Tφ=(true,i):
We consider all possible combinations of Tψ and Tξ to determine if π,i |=ψ R[lb,ub] ξ:
(1) Tψ and Tξ are both empty: There is no new information based on φ.next time to evaluate

if π,i |=ψ R[lb,ub] ξ; therefore, the algorithm does nothing.
(2) Tψ is not empty and Tξ is empty: There is not enough information to determine if

∃j ∈ [i+ lb,i+ ub] such that π,j |̸= ξ, then ∃k < j where k ∈ [i+ lb,i+ ub] such
that π,k |=ψ (where i=φ.previous+1); therefore, the algorithm does nothing.

(3) Tξ.v = false (and Tψ is empty or Tψ.v = false or Tψ.v = true): Tξ.v is the verdict
from [φ.next time,Tξ.τ ] such that φ.next time is lb (initial condition) or was set by
the previous execution to φ.previous+ lb+ 1 or min(Tψ.τ,Tξ.τ) + 1 as described
above. Therefore, Tξ.v = false at φ.previous + lb + 1 and/or ∄k ∈ [φ.previous +
lb+1,φ.next time−1], π,k |=ψ (since the condition on line 16 was not met by the
previous execution). As a result, π,i |̸=ψ R[lb,ub] ξ (following directly from Axiom 2) for
φ.previous<i≤Tξ.τ−lb; therefore, (false,Tξ.τ−lb) is written to φ’s SCQ on line 11.
Figure 12 provides a visualization of this case.

Fig. 12. Pictorial representation of φ=ψR[lb,ub] ξ for Theorem 8 Case (3).
(4) Tψ.v=true and Tξ.v=true: If both Tψ.v and Tξ.v are true, then they are both guaranteed

to be true from [φ.next time,min(Tψ.τ,Tξ.τ)]. Furthermore, Tξ.v is guaranteed to have
never been false from [φ.previous+lb+1,Tξ.τ ] since the result would have been written
on line 11 and the φ.next time and φ.previous variables would have been updated
(lines 9–10). As a result, π,i |=ψ R[lb,ub] ξ for φ.previous<i≤min(Tψ.τ,Tξ.τ)−lb;
therefore, (true,min(Tψ.τ,Tξ.τ)−lb) is written to φ’s SCQ on line 18. Figure 13 provides
a visualization of this case.

(5) Tξ.v=false (and Tψ is empty or Tψ.v=true): There are two sub-cases to consider:
(a) There is enough information to determine that ∀j∈ [i+lb,i+ub] such that π,j |=ξ:

Tξ.v is guaranteed to have never been false from [φ.previous+lb+1,Tξ.τ ] since
the result would have been written on line 11 and the φ.next time and φ.previous
variables would have been updated (lines 9–10). If Tξ.τ > φ.previous+ub, then
∀j ∈ [i+ lb,i+ub] such that π,j |= ξ where i∈ [φ.previous+1,Tξ.τ−ub]. As a
result, π,i |=ψ R[lb,ub] ξ for φ.previous<i≤Tξ.τ−ub (following directly from
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Fig. 13. Pictorial representation of φ=ψR[lb,ub] ξ for Theorem 8 Case (4).
Axiom 2); therefore, (true,Tξ.τ−ub) is written to φ’s SCQ on line 23. Figure 14
provides a visualization of this case.

Fig. 14. Pictorial representation of φ=ψR[lb,ub] ξ for Theorem 8 Case (5)(a)
(b) There is currently not enough information to determine if ∃j∈ [i+lb,i+ub] such that

π,j |̸=ξ: If Tξ.τ≤φ.previous+ub, then there is not enough information to guarantee
that Tξ.v=true from [i+lb,i+ub] where i=φ.previous+1. There is still a chance
that ∃j∈ [Tξ.τ+1,i+ub] such that π,j |̸=ξ; therefore, the algorithm does not write a
tuple. Figure 15 provides a visualization of this case.

Fig. 15. Pictorial representation of φ=ψR[lb,ub] ξ for Theorem 8 Case (5)(b)
(if direction) Tφ=(true,i)→π,i |=ψ R[lb,ub] ξ:

Tφ=(true,i) tuples are only written on lines 18 and 23 such that Tξ.v=true. In both cases,
Tξ.v is guaranteed to have never been false from [φ.previous+lb+1,Tξ.τ ] since the result
would have been written on line 11 and the φ.next time and φ.previous variables would
have been updated (lines 9–10). If Tψ.v= true, then π,i |=ψ R[lb,ub] ξ for φ.previous<
i≤min(Tψ.τ,Tξ.τ)− lb (line 18). If Tψ.v ≠ true and Tξ.τ >φ.previous+ub, then ∀j ∈
[i+lb,i+ub] such that π,j |=ξ; therefore, π,i |=ψ R[lb,ub] ξ for φ.previous<i≤Tξ.τ−ub
(line 23).
Tφ=(false,i) tuples are only written to φ’s SCQ on line 11, which requires that Tξ.v=false
is the verdict from [φ.next time,Tξ.τ ] such that φ.next time is lb (initial condition) or was
set by the previous execution to φ.previous+ lb+1 or min(Tψ.τ,Tξ.τ)+1 as described
above. Therefore, Tξ.v=false at i+lb and/or ∄k∈ [i+lb,φ.next time], π,k |=ψ. As a result,
π,i |̸=ψ R[lb,ub] ξ for φ.previous<i≤Tξ.τ−lb (following directly from Axiom 2).
There are three conditions under which no verdict-timestamp tuples were written to φ’s SCQ
since there is not enough information to determine if π,i |=ψ R[lb,ub] ξ:
(1) Tψ and Tξ are both empty: There is not enough information to evaluate if π,i |=ψR[lb,ub] ξ.
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(2) Tψ is not empty and Tξ is empty: There is not enough information to determine if
∃j ∈ [i+ lb,i+ ub] such that π,j |̸= ξ, then ∃k < j where k ∈ [i+ lb,i+ ub] such
that π,k |=ψ; therefore, if π,i |=ψ R[lb,ub] ξ cannot be determined.

(3) Tξ.v=false and Tξ.τ≤φ.previous+ub and Tψ ≠false: There is not enough information
to guarantee that Tξ.v=true from [i+lb,i+ub] where i=φ.previous+1. There is still a
chance that ∃j∈ [Tξ.τ+1,i+ub] such that π,j |̸=ξ; therefore, if π,i |=ψ R[lb,ub] ξ cannot
be determined.

Verdict-timestamp tuples Tφ=(true,i) are only written to φ’s SCQ iff π,i |=ψR[lb,ub]ξ, and
Tφ=(false,i) are only written to φ’s SCQ iff π,i |̸=ψR[lb,ub]ξ. ⊓⊔

C Correctness of the Since (S) Operator
Theorem 9 (Correctness of the Since Operator). Given the interval [lb,ub] and two children
nodes ψ and ξ, Algorithm 3 writes the tuple Tφ to φ’s SCQ when sufficient data is available
such that for all i≥0, Tφ=(true,i) iff π,i |=ψ S[lb,ub] ξ.

Proof. The φ.edge variable stores the latest timestamp where Tξ.v = true (line 13). The
φ.edge variable is initialized to −1 (line 2) such that before Tξ.v= true, the conditions on
lines 20 and 34 can be rewritten as (−1≤ φ.previous−ub or φ.edge=−1)≡ true and
(−1>φ.previous−ub and φ.edge≠−1)≡false, respectively.

The φ.previous variable stores the previous time index i that node φ=ψ S[lb,ub] ξ wrote
to its SCQ. Before the first tuple is produced, φ.previous is initialized to −1 (line 3) such
that the condition on line 8 can be rewritten as −1+1−lb<0≡0−lb<0, the conditions on
lines 15, 22, and 29 can be rewritten as Tξ.τ >−1−lb or rather Tξ.τ≥0−lb, the condition
on line 20 can be rewritten as (φ.edge≤−1−ub or φ.edge=−1)≡(φ.edge=−1), and the
condition on line 34 can be rewritten as (Tψ.v and Tψ.τ >−1−lb and φ.edge≥0−ub and
φ.edge≠−1)≡(Tψ.v and Tψ.τ≥0−lb and φ.edge≠−1). Whenever a verdict-timestamp
tuple is written, the φ.previous variable is updated to that timestamp (lines 9, 16, 23, 30, and
35).

Note that if i−ub<0, then ∀i∈ [0,ub−1], we can only consider the interval [0,i−lb] for
evaluation (lines 20 and 34). Line 20 checks whether Tξ.v never equals true between [i−ub,i−
lb]; if i−ub< 0, then φ.edge≤φ.previous−ub≡ (φ.edge≥−1)≤ (φ.previous−ub<
−1)≡false since i=φ.previous+1; therefore, line 20 is contingent on whether φ.edge=−1
(i.e., never a time yet where Tξ.v=true). Line 34 performs a similar check to see if Tξ.v=true
between [i−ub,i− lb]; if i−ub < 0, then φ.edge > φ.previous−ub≡ (edge≥−1)>
(φ.previous−ub<−1)≡true since i=φ.previous+1; therefore, line 34 is contingent on
whether φ.edge≠−1 (i.e., there was a time after or at timestamp 0 where Tξ.v=true).

The φ.next time variable determines what timestamp is desired from both node ψ and
node ξ to make the next evaluation. The φ.next time variable is initialized to 0 on line 4 and
is then updated during execution based on what is known about ξ. When Tξ.v= true (and
Tξ.τ <i−lb), its unknown if ∀k>Tξ.τ where j∈ [i−ub,i−lb], π,k |=ψ, and if Tξ.v=false
from [i−ub,Tξ.τ ] (and Tξ.τ <i−lb), its known if ∃j∈ [Tξ.τ+1,i−lb] such that π,j |=ξ, and
if both Tψ.v= false and Tξ.v= false (and Tξ.τ <i−lb), it is known if ∃j∈ [Tξ.τ+1,i−lb]
where π,j |=ξ such that ∀k>j where j∈ [Tξ.τ+1,i−lb], π,k |=ψ. Therefore, φ.next time
will be updated to Tξ.τ+1 on lines 14, 21, and 28. Because of early evaluation (following from
Axiom 3), if a verdict-timestamp tuple is written, then φ.next time is updated to whichever is
greater: i−ub+1 (i.e., the i−ub of the next evaluation) or Tξ.τ+1 (as described above) on lines
14, 21, 28 and 36. Note that on lines 14, 21, and 28, this can be rewritten as just Tξ.τ+1 since
i−ub+1≡ (Tξ.τ+lb)−ub+1 where lb−ub≤0 such that Tξ.τ+(lb−ub)+1≤Tξ.τ+1.
Figures 16, 17, 18, and 19 illustrate examples of how the φ.next time variable is updated.
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The φ.next time variable is then an input into the read functions on lines 6–7 (defined in
Algorithm 1) such that if the timestamp φ.next time is available in node ψ, then Tψ.v is the
verdict for the interval [φ.next time,Tψ.τ ], and if φ.next time is available in node ξ, then
Tξ.v is the verdict for the interval [φ.next time,Tξ.τ ] (following from Theorem 2).

(only-if direction) π,i |=ψ S[lb,ub] ξ→Tφ=(true,i): As an initial condition, if 0−lb<0
(line 8), then ∀i∈ [0,lb−1], no interval exists from [i−ub,i− lb]; therefore, the algorithm
automatically writes false for all time indexes less than the lower bound (line 10). We then
consider all possible combinations of Tψ and Tξ to determine if π,i |=ψ S[lb,ub] ξ:
(1) (Tψ is empty or Tψ.τ ≤φ.previous−lb) and (Tξ is empty or Tξ.τ ≤φ.previous−lb):

There is not enough information to determine if ∃j∈ [i−ub,i−lb] such that π,j |=ξ and
∀k > j where k ∈ [i−ub,i− lb], π,k |=ψ (where i=φ.previous+1); therefore, the
algorithm does not write a tuple.

(2) Tξ.v=true and Tξ.τ >φ.previous−lb and (Tψ is empty or Tψ.v=true or Tψ.v=false):
Tξ.v is the verdict from [φ.next time,Tξ.τ ] such that φ.next time≤φ.previous−lb+
1 since the result would have been previously written on line 17 and the φ.next time
variable would have been updated (line 14). Therefore, Tξ.v is guaranteed to be true at
i− lb where i∈ [φ.previous+1,Tξ.τ+ lb]. As a result, π,i |=ψ S[lb,ub] ξ (following
directly from Axiom 3) for φ.previous < i≤ Tξ.τ + lb; therefore (true,Tξ.τ + lb) is
written to φ’s SCQ on line 17. Figure 16 provides a visualization of this case.

Fig. 16. Pictorial representation of φ=ψ S[lb,ub] ξ for Theorem 9 Case (2)

(3) Tξ.v=false andTξ.τ >φ.previous−lb and (Tψ is empty orTψ.v=true orTψ.v=false):
There are two sub-cases to consider:
(a) There is enough information to determine that ∄j∈ [i−ub,i−lb] such that π,j |=ξ: If

φ.edge≤φ.previous−ub or φ.edge=−1, then Tξ.v is guaranteed to have never
been true from [max(φ.previous−ub+1,0),Tξ.τ ] since φ.edge would have been
updated on line 13. Since Tξ.τ >φ.previous−lb, then ∄j∈ [i−ub,i−lb] such that
π,j |=ξ where i∈ [φ.previous+1,Tξ.τ+lb]. As a result,π,i |̸=ψ S[lb,ub] ξ (following
directly from Axiom 3) for φ.previous<i≤Tξ.τ+lb; therefore (false,Tξ.τ+lb) is
written to φ’s SCQ on line 24. Figure 17 provides a visualization of this case.

Fig. 17. Pictorial representation of φ=ψ S[lb,ub] ξ for Theorem 9 Case (3)(a)
(b) There is currently enough information to determine ∃j∈ [i−ub,i−lb] where π,j |=ξ:

If φ.edge>φ.previous−ub and φ.edge≠−1, then ∃j∈ [i−ub,i−lb−1] such that
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the latest value of j is φ.edge=φ.next time−1 as set by the previous execution on
lines 13 and 14. (Note that if π,i−lb |=ξ, then the result would have been written on
line 17 and the φ.next time and φ.edge variables would have been updated on lines
13 and 14.) There are three sub-cases:

(b.1) There is currently enough information to determine ∀/k>j where j∈ [φ.edge+
1,i−lb], π,k |=ψ: If Tψ.v=false, Tψ.v is guaranteed to be false from [φ.edge+
1,Tψ.τ ] since φ.next time= φ.edge+1. As a result, π,i |̸= ψ S[lb,ub] ξ for
φ.previous<i≤Tξ.τ+lb; therefore (false,Tξ.τ+lb) is written to φ’s SCQ on
line 31. Figure 18 provides a visualization of this case.

Fig. 18. Pictorial representation of φ=ψ S[lb,ub] ξ for Theorem 9 Case (3)(b.1)
(b.2) There is currently enough information to determine ∀k>j where j∈ [φ.edge+

1,i− lb], π,k |= ψ: If Tψ.v= true and Tψ.τ > φ.previous− lb, then ∀k > j
where k∈ [φ.edge+1,i−lb], π,k |=ψ such that i∈ [φ.previous+1,Tψ.τ+lb].
Since it’s only known that ∃j ∈ [i − ub, i − lb] where π, j |= ξ such that
i ∈ [φ.previous+1,(φ.edge+(ub− lb))+ lb], it’s only known that π,i |=
ψ S[lb,ub] ξ for φ.previous < i ≤ min(Tψ.τ + lb,φ.edge+ ub); therefore,
(true,min(Tψ.τ+lb,φ.edge+ub) is written to φ’s SCQ on line 37. Figure 19
provides a visualization of this case.

Fig. 19. Pictorial representation of φ=ψ S[lb,ub] ξ for Theorem 9 Case (3)(b.2)
(b.3) There is currently not enough information to determine if ∀k > j where j ∈

[φ.edge+1,i− lb], π,k |= ψ: If Tψ.v = true and Tψ.τ < i− lb, there is not
enough information to know if ∀k>j where j∈ [φ.edge+1,i−lb], π,k |=ψ;
therefore, the algorithm does not write a tuple.

(4) Tψ.τ≥i−lb and (Tξ is empty or Tξ.τ <i−lb): There are two sub-cases to consider:
(a) There is enough information to determine that ∃j∈ [i−ub,i−lb] where π,j |=ξ such

that ∀k > j where j ∈ [i− lb,i− lb], π,k |=ψ: If φ.edge > φ.previous−ub and
φ.edge≠−1, then this follows directly as Case (3) (b.2) above (following directly
from Axiom 3).

(b) There is not enough information to determine if ∃j ∈ [i−ub,i−lb] where π,j |= ξ
such that ∀k>j where j∈ [i−lb,i−lb], π,k |=ψ: If φ.edge≤φ.previous−ub or
φ.edge=−1, then there is still a chance that ∃j∈ [i−ub,i−lb] where π,j |=ξ in the
future such that ∀k>j where j∈ [i−lb,i−lb], π,k |=ψ; therefore, the algorithm does
not write a tuple.
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(if direction) Tφ=(true,i)→π,i |=ψ S[lb,ub] ξ:
Tφ=(true,i) tuples are only written to φ’s SCQ on lines 17 and 37:
(1) line 17: Tξ.v = true is guaranteed to be the verdict from [φ.next time,Tξ.τ ] such

that φ.next time ≤ φ.previous− lb+1 and Tξ.τ ≥ φ.previous− lb+1; therefore,
Tξ.v=true at i−lb where i∈ [φ.previous+1,Tξ.τ+lb]. As a result, π,i |=ψ S[lb,ub] ξ
(following directly from Axiom 3) for φ.previous<i≤Tξ.τ+lb.

(2) line 37: It is guaranteed that ∃j ∈ [φ.previous− ub+1,φ.previous− lb] such that
π,j |=ξ where j=φ.edge and that Tψ.v=true is the verdict from [φ.next time,Tψ.τ ]
where φ.next time=φ.edge+1 (as set by the previous execution on line 13–14) and
Tψ.τ ≥ φ.previous− lb+1; therefore, ∃j ∈ [i−ub,i− lb] where i ∈ [φ.previous+
1,(φ.edge+(ub−lb))+lb)] and ∀k>j where k∈ [i−ub,i−lb], Tψ.v= true such that
i ∈ [φ.previous+1,Tψ.τ + lb]. As a result, π,i |= ψ S[lb,ub] ξ for φ.previous < i≤
min(Tξ.τ+lb,φ.edge+ub).

Tφ=(false,i) tuples are only written on lines 10, 24, and 31:
(1) line 10: When i−lb<0 (i.e., i<lb), there will never exist an interval [i−ub,i−lb]. As a

result, π,i |̸=ψ S[lb,ub] ξ for i<lb.
(2) line 24:Tξ.v is guaranteed to have never been true from [φ.previous−lb+1,φ.previous−

ub+1] since the φ.edge would have been updated on line 13; therefore, ∄j∈ [i−ub,i−lb]
such that π,j |=ξ. As a result, π,i |̸=ψ S[lb,ub] ξ (following directly from Axiom 3) for
φ.previous<i≤Tξ+lb.

(3) line 31: It is guaranteed that ∃j∈ [φ.previous−ub+1,φ.previous−lb] such that π,j |=ξ
where j = φ.edge and j is the latest time in [(φ.previous+1)− ub,φ.previous−
lb] where π,j |= ξ, but Tψ.v = false is the verdict from [φ.next time,Tψ.τ ] where
φ.next time=φ.edge+1 (as set by the previous execution on line 13–14); therefore,
∃j∈ [i−ub,i−lb] such that π,j |=ξ but there is never an instance where ∀k>j where
k∈ [i−lb,i−ub], π,k |=ψ. As a result, π,i |̸=ψ S[lb,ub] ξ for φ.previous<i≤Tξ+lb.

There are three conditions under which no verdict-timestamp tuples were written to φ’s SCQ
since there is not enough information to determine if π,i |=ψ S[lb,ub] ξ:
(1) (Tψ is empty or Tψ.τ ≤φ.previous−lb) and (Tξ is empty or Tξ.τ ≤φ.previous−lb):

There is not enough information based on φ.next time to evaluate if π,i |=ψ S[lb,ub] ξ;
therefore, the algorithm does not write a tuple.

(2) Tξ.v= false and Tξ.τ > i−lb and Tψ.v= true and Tψ.τ < i−lb and φ.edge≥ i−ub
and φ.edge≠−1: If φ.edge≥i−ub and φ.edge≠−1, then ∃j∈ [i−ub,i−lb−1] such
that the latest value of j is φ.edge=φ.next time−1 as set by the previous execution on
lines 13 and 14. Tψ.v=true is the verdict from [φ.edge+1,Tψ.τ ], but there is not enough
information to determine if π,k |=ψ where k∈ [Tψ.τ+1,i−lb]; therefore, the algorithm
does nothing.

(3) (Tξ is Empty or Tξ.τ <i−lb) and Tψ.τ≥ i−lb and (φ.edge<i−ub or φ.edge=−1):
There is not enough information to guarantee that ∄j∈ [i−ub,i−lb] such that π,i |= ξ,
where ∀k>j such that k∈ [i−ub,i−lb], π,k |=ψ. More specifically, it is guaranteed to be
unknown if π,i−lb |=ξ (as described in Axiom 3); therefore, the algorithm does not write
a tuple.

Verdict-timestamp tuples Tφ=(true,i) are only written to φ’s SCQ iff π,i |=ψ S[lb,ub] ξ,
and Tφ=(false,i) are only written to φ’s SCQ iff π,i |̸=ψ S[lb,ub] ξ. ⊓⊔
D Trigger (T ) Algorithm
Theorem 10 (Correctness of the Trigger Operator). Given the interval [lb,ub] and two
children nodes ψ and ξ, Algorithm 9 writes the tuple Tφ to φ’s SCQ when sufficient data is
available such that for all i≥0, Tφ=(true,i) iff π,i |=ψ T[lb,ub] ξ.
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Algorithm 9: Trigger Operator: φ=ψ T[lb,ub] ξ
1 Initialize:
2 φ.edge=−1 // Initialize φ.edge; stores the last i where π,i |̸=ξ
3 φ.previous=−1 // Initialize φ.previous; stores the last i written
4 φ.next time=0 // Initialize φ.next time; stores the next time for ψ and ξ
5 procedure Trigger(ψ,ξ)

Input: Node:ψ; Node: ξ
6 Tψ =ψ.read(φ.read1 ptr,φ.next time) // Read Node ψ
7 Tξ = ξ.read(φ.read2 ptr,φ.next time) // Read Node ξ
8 ifφ.previous+1−lb<0 then // i−lb<0
9 φ.previous=lb−1

10 φ.write(true,lb−1) // Writing Tφ=(true,lb−1)
11 if Tξ ≠Empty then // New Tξ
12 if !(Tξ.v) then // Tξ.v= false
13 φ.edge=Tξ.τ // Updating φ.edge to last false edge
14 φ.next time=Tξ.τ+1 // Updating φ.next time to after φ.edge
15 if Tξ.τ >φ.previous−lb then // π,i−lb |̸=ξ
16 φ.previous=Tξ.τ+lb
17 φ.write(false,Tξ.τ+lb) // Writing Tφ=(false,Tξ.τ+lb)
18 return
19 else // Tξ.v=true
20 if φ.edge≤φ.previous−ub orφ.edge=−1 then // ∀j∈ [i−ub,Tξ.τ],π,j |=ξ
21 φ.next time=Tξ.τ+1 // Move φ.next time forward
22 if Tξ.τ >φ.previous−lb then // ∀j∈ [i−ub,i−lb],π,j |=ξ
23 φ.previous=Tξ.τ+lb
24 φ.write(true,Tξ.τ+lb) // Writing Tφ=(true,Tξ.τ+lb)
25 return
26 if Tψ ≠Empty then // New Tψ
27 if Tψ.v then // Tψ.v=true and Tξ.v=true
28 φ.next time=Tξ.τ+1 // Move φ.next time forward
29 if Tξ.τ >φ.previous−lb then
30 φ.previous=Tξ.τ+lb
31 φ.write(true,Tξ.τ+lb) // Writing Tφ=(true,Tξ.τ+lb)
32 return

33 if Tψ ≠Empty then // New Tψ
/* ∃φ.edge∈ [i−ub,i−lb], such that ∄k>φ.edge where k≥i−lb, π,k |=ψ */

34 if !(Tψ.v) and Tψ.τ >φ.previous−lb andφ.edge>φ.previous−ub andφ.edge≠−1 then
35 φ.previous=min(Tψ.τ+lb,φ.edge+ub) // Limit i based on φ.edge
36 φ.next time=max(φ.next time,φ.previous−ub+1)
37 φ.write(false,φ.previous) // Writing Tφ=(false,φ.previous)

Proof. The φ.edge variable stores the latest timestamp where Tξ.v = false (line 13). The
φ.edge variable is initialized to −1 (line 2) such that before Tξ.v= false, the conditions on
lines 20 and 34 can be rewritten as (−1≤ φ.previous−ub or φ.edge=−1)≡ true and
(−1>φ.previous−ub and φ.edge≠−1)≡false, respectively.

The φ.previous variable stores the previous time index i that node φ=ψ T[lb,ub] ξ wrote
to its SCQ. Before the first tuple is produced, φ.previous is initialized to −1 (line 3) such
that the condition on line 8 can be rewritten as −1+1−lb<0≡0−lb<0, the conditions on
lines 15, 22, and 29 can be rewritten as Tξ.τ >−1−lb or rather Tξ.τ≥0−lb, the condition
on line 20 can be rewritten as (φ.edge≤−1−ub or φ.edge=−1)≡(φ.edge=−1), and the
condition on line 34 can be rewritten as (Tψ.v and Tψ.τ >−1−lb and φ.edge≥0−ub and
φ.edge≠−1)≡(Tψ.v and Tψ.τ≥0−lb and φ.edge≠−1). Whenever a verdict-timestamp
tuple is written, the φ.previous variable is updated to that timestamp (lines 9, 16, 23, 30, and
35).

Note that if i−ub<0, then ∀i∈ [0,ub−1], we can only consider the interval [0,i−lb] for
evaluation (lines 20 and 34). Line 20 checks whether Tξ.v never equals false between [i−ub,i−
lb]; if i−ub< 0, then φ.edge≤φ.previous−ub≡ (φ.edge≥−1)≤ (φ.previous−ub<
−1)≡false since i=φ.previous+1; therefore, line 20 is contingent on whether φ.edge=−1
(i.e., never a time yet where Tξ.v=false). Line 34 performs a similar check to see if Tξ.v=false
between [i−ub,i− lb]; if i−ub < 0, then φ.edge > φ.previous−ub≡ (edge≥−1)>
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(φ.previous−ub<−1)≡true since i=φ.previous+1; therefore, line 34 is contingent on
whether φ.edge≠−1 (i.e., there was a time after or at timestamp 0 where Tξ.v=false).

The φ.next time variable determines what timestamp is desired from both node ψ and
node ξ to make the next evaluation. The φ.next time variable is initialized to 0 on line 4 and
is then updated during execution based on what is known about ξ. When Tξ.v= false (and
Tξ.τ <i−lb), its unknown if ∃k>Tξ.τ where j∈ [i−ub,i−lb], π,k |=ψ, and if Tξ.v=true
from [i−ub,Tξ.τ ] (and Tξ.τ <i−lb), its known if ∃j∈ [Tξ.τ+1,i−lb] such that π,j |̸=ξ, and
if both Tψ.v= true and Tξ.v= true (and Tξ.τ < i−lb), it is known if ∃j∈ [Tξ.τ+1,i−lb]
where π,j |̸=ξ such that ∃k>j where j∈ [Tξ.τ+1,i−lb], π,k |=ψ. Therefore, φ.next time
will be updated to Tξ.τ+1 on lines 14, 21, and 28. Because of early evaluation (following from
Axiom 4), if a verdict-timestamp tuple is written, then φ.next time is updated to whichever is
greater: i−ub+1 (i.e., the i−ub of the next evaluation) or Tξ.τ+1 (as described above) on lines
14, 21, 28 and 36. Note that on lines 14, 21, and 28, this can be rewritten as just Tξ.τ+1 since
i−ub+1≡ (Tξ.τ+lb)−ub+1 where lb−ub≤0 such that Tξ.τ+(lb−ub)+1≤Tξ.τ+1.
Figures 20, 21, 22, and 23 illustrate examples of how the φ.next time variable is updated.

The φ.next time variable is then an input into the read functions on lines 6–7 (defined in
Algorithm 1) such that if the timestamp φ.next time is available in node ψ, then Tψ.v is the
verdict for the interval [φ.next time,Tψ.τ ], and if φ.next time is available in node ξ, then
Tξ.v is the verdict for the interval [φ.next time,Tξ.τ ] (following from Theorem 2).

(only-if direction) π,i |=ψ T[lb,ub] ξ→Tφ=(true,i): As an initial condition, if 0−lb<0
(line 8), then ∀i∈ [0,lb−1], no interval exists from [i−ub,i− lb]; therefore, the algorithm
automatically writes true for all time indexes less than the lower bound (line 10). We then
consider all possible combinations of Tψ and Tξ to determine if π,i |=ψ T[lb,ub] ξ:
(1) (Tψ is empty or Tψ.τ ≤φ.previous−lb) and (Tξ is empty or Tξ.τ ≤φ.previous−lb):

There is not enough information to determine if ∃j∈ [i−ub,i−lb] such that π,j |̸=ξ and
∃k > j where k ∈ [i−ub,i− lb], π,k |=ψ (where i=φ.previous+1); therefore, the
algorithm does not write a tuple.

(2) Tξ.v=false andTξ.τ >φ.previous−lb and (Tψ is empty orTψ.v=true orTψ.v=false):
Tξ.v is the verdict from [φ.next time,Tξ.τ ] such that φ.next time≤φ.previous−lb+
1 since the result would have been previously written on line 17 and the φ.next time
variable would have been updated (line 14). Therefore, Tξ.v is guaranteed to be false at
i− lb where i∈ [φ.previous+1,Tξ.τ + lb]. As a result, π,i |̸= ψ T[lb,ub] ξ (following
directly from Axiom 4) for φ.previous < i≤ Tξ.τ + lb; therefore (false,Tξ.τ + lb) is
written to φ’s SCQ on line 17. Figure 20 provides a visualization of this case.

Fig. 20. Pictorial representation of φ=ψ T[lb,ub] ξ for Theorem 10 Case (2)

(3) Tξ.v=true and Tξ.τ >φ.previous−lb and (Tψ is empty or Tψ.v=true or Tψ.v=false):
There are two sub-cases to consider:
(a) There is enough information to determine that ∀j∈ [i−ub,i−lb] such that π,j |=ξ: If

φ.edge≤φ.previous−ub or φ.edge=−1, then Tξ.v is guaranteed to have never
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been false from [max(φ.previous−ub+1,0),Tξ.τ ] since φ.edge would have been
updated on line 13. Since Tξ.τ >φ.previous−lb, then ∀j∈ [i−ub,i−lb] such that
π,j |=ξ where i∈ [φ.previous+1,Tξ.τ+lb]. As a result,π,i |=ψ T[lb,ub] ξ (following
directly from Axiom 4) for φ.previous<i≤Tξ.τ+lb; therefore (true,Tξ.τ+lb) is
written to φ’s SCQ on line 24. Figure 21 provides a visualization of this case.

Fig. 21. Pictorial representation of φ=ψ T[lb,ub] ξ for Theorem 10 Case (3)(a)

(b) There is currently enough information to determine ∃j∈ [i−ub,i−lb] where π,j |̸=ξ:
If φ.edge>φ.previous−ub and φ.edge≠−1, then ∃j∈ [i−ub,i−lb−1] such that
the latest value of j is φ.edge=φ.next time−1 as set by the previous execution on
lines 13 and 14. (Note that if π,i−lb |̸=ξ, then the result would have been written on
line 17 and the φ.next time and φ.edge variables would have been updated on lines
13 and 14.) There are three sub-cases:

(b.1) There is currently enough information to determine ∃k>j where j∈ [φ.edge+
1,i−lb], π,k |=ψ: If Tψ.v=true, Tψ.v is guaranteed to be true from [φ.edge+
1,Tψ.τ ] since φ.next time= φ.edge+1. As a result, π,i |= ψ T[lb,ub] ξ for
φ.previous<i≤Tξ.τ+lb; therefore (true,Tξ.τ+lb) is written to φ’s SCQ on
line 31. Figure 22 provides a visualization of this case.

Fig. 22. Pictorial representation of φ=ψ T[lb,ub] ξ for Theorem 10 Case (3)(b.1)
(b.2) There is currently enough information to determine ∄k>j where j∈ [φ.edge+

1,i− lb], π,k |=ψ: If Tψ.v= false and Tψ.τ > φ.previous− lb, then ∄k > j
where k∈ [φ.edge+1,i−lb], π,k |=ψ such that i∈ [φ.previous+1,Tψ.τ+lb].
Since it’s only known that ∃j ∈ [i − ub, i − lb] where π, j |̸= ξ such that
i ∈ [φ.previous+1,(φ.edge+(ub− lb))+ lb], it’s only known that π,i |̸=
ψ T[lb,ub] ξ for φ.previous < i ≤ min(Tψ.τ + lb,φ.edge+ ub); therefore,
(false,min(Tψ.τ+lb,φ.edge+ub) is written to φ’s SCQ on line 37. Figure 23
provides a visualization of this case.

(b.3) There is currently not enough information to determine if ∃k > j where j ∈
[φ.edge+1,i− lb], π,k |= ψ: If Tψ.v = false and Tψ.τ < i− lb, there is not
enough information to know if ∃k>j where j∈ [φ.edge+1,i−lb], π,k |=ψ;
therefore, the algorithm does not write a tuple.

(4) Tψ.τ≥i−lb and (Tξ is empty or Tξ.τ <i−lb): There are two sub-cases to consider:
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Fig. 23. Pictorial representation of φ=ψ T[lb,ub] ξ for Theorem 10 Case (3)(b.2)
(a) There is enough information to determine that ∃j∈ [i−ub,i−lb] where π,j |=ξ such

that ∃k > j where j ∈ [i− lb,i− lb], π,k |=ψ: If φ.edge > φ.previous−ub and
φ.edge≠−1, then this follows directly as Case (3) (b.2) above (following directly
from Axiom 4).

(b) There is not enough information to determine if ∃j ∈ [i−ub,i−lb] where π,j |= ξ
such that ∃k>j where j∈ [i−lb,i−lb], π,k |=ψ: If φ.edge≤φ.previous−ub or
φ.edge=−1, then there is still a chance that ∃j∈ [i−ub,i−lb] where π,j |=ξ in the
future such that ∃k>j where j∈ [i−lb,i−lb], π,k |̸=ψ; therefore, the algorithm does
not write a tuple.

(if direction) Tφ=(true,i)→π,i |=ψ T[lb,ub] ξ:
Tφ=(true,i) tuples are only written on lines 10, 24, and 31:
(1) line 10: When i−lb<0 (i.e., i<lb), there will never exist an interval [i−ub,i−lb]. As a

result, π,i |=ψ T[lb,ub] ξ for i<lb.
(2) line 24:Tξ.v is guaranteed to have never been false from [φ.previous−lb+1,φ.previous−

ub+1] since the φ.edge would have been updated on line 13; therefore, ∀j∈ [i−ub,i−lb]
such that π,j |= ξ. As a result, π,i |=ψ T[lb,ub] ξ (following directly from Axiom 4) for
φ.previous<i≤Tξ+lb.

(3) line 31: It is guaranteed that ∃j∈ [φ.previous−ub+1,φ.previous−lb] such that π,j |̸=ξ
where j = φ.edge and j is the latest time in [(φ.previous+1)− ub,φ.previous−
lb] where π,j |= ξ, but Tψ.v = true is the verdict from [φ.next time,Tψ.τ ] where
φ.next time=φ.edge+1 (as set by the previous execution on line 13–14); therefore, if
∃j∈ [i−ub,i−lb] such that π,j |=ξ, then ∃k>j where k∈ [i−lb,i−ub], π,k |=ψ. As a
result, π,i |=ψ T[lb,ub] ξ for φ.previous<i≤Tξ+lb.

Tφ=(false,i) tuples are only written to φ’s SCQ on lines 17 and 37:
(1) line 17: Tξ.v = false is guaranteed to be the verdict from [φ.next time,Tξ.τ ] such

that φ.next time ≤ φ.previous− lb+1 and Tξ.τ ≥ φ.previous− lb+1; therefore,
Tξ.v= false at i−lb where i∈ [φ.previous+1,Tξ.τ+lb]. As a result, π,i |̸=ψ T[lb,ub] ξ
(following directly from Axiom 4) for φ.previous<i≤Tξ.τ+lb.

(2) line 37: It is guaranteed that ∃j ∈ [φ.previous− ub+1,φ.previous− lb] such that
π,j |=ξ where j=φ.edge but Tψ.v=false is the verdict from [φ.next time,Tψ.τ ] where
φ.next time=φ.edge+1 (as set by the previous execution on line 13–14) and Tψ.τ≥
φ.previous−lb+1; therefore, ∃j∈ [i−ub,i−lb] where i∈ [φ.previous+1,(φ.edge+
(ub− lb))+ lb)] but there is never an instance where ∃k > j where k ∈ [i−ub,i− lb],
Tψ.v= true such that i∈ [φ.previous+1,Tψ.τ+lb]. As a result, π,i |̸=ψ T[lb,ub] ξ for
φ.previous<i≤min(Tξ.τ+lb,φ.edge+ub).

There are three conditions under which no verdict-timestamp tuples were written to φ’s SCQ
since there is not enough information to determine if π,i |=ψ T[lb,ub] ξ:
(1) (Tψ is empty or Tψ.τ ≤φ.previous−lb) and (Tξ is empty or Tξ.τ ≤φ.previous−lb):

There is not enough information based on φ.next time to evaluate if π,i |=ψ T[lb,ub] ξ;
therefore, the algorithm does not write a tuple.
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(2) Tξ.v= true and Tξ.τ > i−lb and Tψ.v= false and Tψ.τ < i−lb and φ.edge≥ i−ub
and φ.edge≠−1: If φ.edge≥i−ub and φ.edge≠−1, then ∃j∈ [i−ub,i−lb−1] such
that the latest value of j is φ.edge=φ.next time−1 as set by the previous execution on
lines 13 and 14. Tψ.v=false is the verdict from [φ.edge+1,Tψ.τ ], but there is not enough
information to determine if π,k |=ψ where k∈ [Tψ.τ+1,i−lb]; therefore, the algorithm
does nothing.

(3) (Tξ is Empty or Tξ.τ <i−lb) and Tψ.τ≥ i−lb and (φ.edge<i−ub or φ.edge=−1):
There is not enough information to guarantee that if ∃j∈ [i−ub,i−lb] such that π,i |̸=ξ,
then ∃k>j such that k∈ [i−ub,i−lb], π,k |=ψ. More specifically, it is guaranteed to be
unknown if π,i−lb |̸=ξ (as described in Axiom 4); therefore, the algorithm does not write
a tuple.

Verdict-timestamp tuples Tφ=(true,i) are only written to φ’s SCQ iff π,i |=ψ T[lb,ub] ξ,
and Tφ=(false,i) are only written to φ’s SCQ iff π,i |̸=ψ T[lb,ub] ξ. ⊓⊔
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